Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Loading...
Loading
Contract Name:
VerifyingPaymaster
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.19;
import { IEntryPoint } from "account-abstraction/contracts/interfaces/IEntryPoint.sol";
import { UserOperation } from "account-abstraction/contracts/interfaces/UserOperation.sol";
import { UserOperationLib } from "account-abstraction/contracts/interfaces/UserOperation.sol";
import { BasePaymaster } from "account-abstraction/contracts/core/BasePaymaster.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import "account-abstraction/contracts/core/Helpers.sol" as Helpers;
/**
* A paymaster based on the eth-infinitism sample VerifyingPaymaster contract.
* It has the same functionality as the sample, but with added support for withdrawing ERC20 tokens.
* All withdrawn tokens will be transferred to the owner address.
* Note that the off-chain signer should have a strategy in place to handle a failed token withdrawal.
*
* See account-abstraction/contracts/samples/VerifyingPaymaster.sol for detailed comments.
*/
contract VerifyingPaymaster is BasePaymaster {
using ECDSA for bytes32;
using UserOperationLib for UserOperation;
using SafeERC20 for IERC20;
mapping(address sender => uint256 nonce) public senderNonce;
uint256 private constant VALID_PND_OFFSET = 20;
uint256 private constant SIGNATURE_OFFSET = 148;
uint256 public constant POST_OP_GAS = 35000;
constructor(IEntryPoint _entryPoint, address _owner) BasePaymaster(_entryPoint) {
_transferOwnership(_owner);
}
function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
bytes calldata pnd = userOp.paymasterAndData;
// solhint-disable-next-line no-inline-assembly
assembly {
let ofs := userOp
let len := sub(sub(pnd.offset, ofs), 32)
ret := mload(0x40)
mstore(0x40, add(ret, add(len, 32)))
mstore(ret, len)
calldatacopy(add(ret, 32), ofs, len)
}
}
function getHash(
UserOperation calldata userOp,
uint48 validUntil,
uint48 validAfter,
address erc20Token,
uint256 exchangeRate
) public view returns (bytes32) {
return
keccak256(
abi.encode(
pack(userOp),
block.chainid,
address(this),
senderNonce[userOp.getSender()],
validUntil,
validAfter,
erc20Token,
exchangeRate
)
);
}
function _validatePaymasterUserOp(
UserOperation calldata userOp,
bytes32 /*userOpHash*/,
uint256 requiredPreFund
) internal override returns (bytes memory context, uint256 validationData) {
(requiredPreFund);
(
uint48 validUntil,
uint48 validAfter,
address erc20Token,
uint256 exchangeRate,
bytes calldata signature
) = parsePaymasterAndData(userOp.paymasterAndData);
// solhint-disable-next-line reason-string
require(
signature.length == 64 || signature.length == 65,
"VerifyingPaymaster: invalid signature length in paymasterAndData"
);
bytes32 hash = ECDSA.toEthSignedMessageHash(getHash(userOp, validUntil, validAfter, erc20Token, exchangeRate));
senderNonce[userOp.getSender()]++;
context = "";
if (erc20Token != address(0)) {
context = abi.encode(
userOp.sender,
erc20Token,
exchangeRate,
userOp.maxFeePerGas,
userOp.maxPriorityFeePerGas
);
}
if (owner() != ECDSA.recover(hash, signature)) {
return (context, Helpers._packValidationData(true, validUntil, validAfter));
}
return (context, Helpers._packValidationData(false, validUntil, validAfter));
}
function _postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) internal override {
(address sender, IERC20 token, uint256 exchangeRate, uint256 maxFeePerGas, uint256 maxPriorityFeePerGas) = abi
.decode(context, (address, IERC20, uint256, uint256, uint256));
uint256 opGasPrice;
unchecked {
if (maxFeePerGas == maxPriorityFeePerGas) {
opGasPrice = maxFeePerGas;
} else {
opGasPrice = Math.min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
}
}
uint256 actualTokenCost = ((actualGasCost + (POST_OP_GAS * opGasPrice)) * exchangeRate) / 1e18;
if (mode != PostOpMode.postOpReverted) {
token.safeTransferFrom(sender, owner(), actualTokenCost);
}
}
function parsePaymasterAndData(
bytes calldata paymasterAndData
)
public
pure
returns (
uint48 validUntil,
uint48 validAfter,
address erc20Token,
uint256 exchangeRate,
bytes calldata signature
)
{
(validUntil, validAfter, erc20Token, exchangeRate) = abi.decode(
paymasterAndData[VALID_PND_OFFSET:SIGNATURE_OFFSET],
(uint48, uint48, address, uint256)
);
signature = paymasterAndData[SIGNATURE_OFFSET:];
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
/* solhint-disable reason-string */
import "@openzeppelin/contracts/access/Ownable.sol";
import "../interfaces/IPaymaster.sol";
import "../interfaces/IEntryPoint.sol";
import "./Helpers.sol";
/**
* Helper class for creating a paymaster.
* provides helper methods for staking.
* validates that the postOp is called only by the entryPoint
*/
abstract contract BasePaymaster is IPaymaster, Ownable {
IEntryPoint immutable public entryPoint;
constructor(IEntryPoint _entryPoint) {
entryPoint = _entryPoint;
}
/// @inheritdoc IPaymaster
function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
external override returns (bytes memory context, uint256 validationData) {
_requireFromEntryPoint();
return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
}
function _validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
internal virtual returns (bytes memory context, uint256 validationData);
/// @inheritdoc IPaymaster
function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external override {
_requireFromEntryPoint();
_postOp(mode, context, actualGasCost);
}
/**
* post-operation handler.
* (verified to be called only through the entryPoint)
* @dev if subclass returns a non-empty context from validatePaymasterUserOp, it must also implement this method.
* @param mode enum with the following options:
* opSucceeded - user operation succeeded.
* opReverted - user op reverted. still has to pay for gas.
* postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
* Now this is the 2nd call, after user's op was deliberately reverted.
* @param context - the context value returned by validatePaymasterUserOp
* @param actualGasCost - actual gas used so far (without this postOp call).
*/
function _postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) internal virtual {
(mode,context,actualGasCost); // unused params
// subclass must override this method if validatePaymasterUserOp returns a context
revert("must override");
}
/**
* add a deposit for this paymaster, used for paying for transaction fees
*/
function deposit() public payable {
entryPoint.depositTo{value : msg.value}(address(this));
}
/**
* withdraw value from the deposit
* @param withdrawAddress target to send to
* @param amount to withdraw
*/
function withdrawTo(address payable withdrawAddress, uint256 amount) public onlyOwner {
entryPoint.withdrawTo(withdrawAddress, amount);
}
/**
* add stake for this paymaster.
* This method can also carry eth value to add to the current stake.
* @param unstakeDelaySec - the unstake delay for this paymaster. Can only be increased.
*/
function addStake(uint32 unstakeDelaySec) external payable onlyOwner {
entryPoint.addStake{value : msg.value}(unstakeDelaySec);
}
/**
* return current paymaster's deposit on the entryPoint.
*/
function getDeposit() public view returns (uint256) {
return entryPoint.balanceOf(address(this));
}
/**
* unlock the stake, in order to withdraw it.
* The paymaster can't serve requests once unlocked, until it calls addStake again
*/
function unlockStake() external onlyOwner {
entryPoint.unlockStake();
}
/**
* withdraw the entire paymaster's stake.
* stake must be unlocked first (and then wait for the unstakeDelay to be over)
* @param withdrawAddress the address to send withdrawn value.
*/
function withdrawStake(address payable withdrawAddress) external onlyOwner {
entryPoint.withdrawStake(withdrawAddress);
}
/// validate the call is made from a valid entrypoint
function _requireFromEntryPoint() internal virtual {
require(msg.sender == address(entryPoint), "Sender not EntryPoint");
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
/* solhint-disable no-inline-assembly */
/**
* returned data from validateUserOp.
* validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
* @param aggregator - address(0) - the account validated the signature by itself.
* address(1) - the account failed to validate the signature.
* otherwise - this is an address of a signature aggregator that must be used to validate the signature.
* @param validAfter - this UserOp is valid only after this timestamp.
* @param validaUntil - this UserOp is valid only up to this timestamp.
*/
struct ValidationData {
address aggregator;
uint48 validAfter;
uint48 validUntil;
}
//extract sigFailed, validAfter, validUntil.
// also convert zero validUntil to type(uint48).max
function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
address aggregator = address(uint160(validationData));
uint48 validUntil = uint48(validationData >> 160);
if (validUntil == 0) {
validUntil = type(uint48).max;
}
uint48 validAfter = uint48(validationData >> (48 + 160));
return ValidationData(aggregator, validAfter, validUntil);
}
// intersect account and paymaster ranges.
function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
ValidationData memory accountValidationData = _parseValidationData(validationData);
ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
address aggregator = accountValidationData.aggregator;
if (aggregator == address(0)) {
aggregator = pmValidationData.aggregator;
}
uint48 validAfter = accountValidationData.validAfter;
uint48 validUntil = accountValidationData.validUntil;
uint48 pmValidAfter = pmValidationData.validAfter;
uint48 pmValidUntil = pmValidationData.validUntil;
if (validAfter < pmValidAfter) validAfter = pmValidAfter;
if (validUntil > pmValidUntil) validUntil = pmValidUntil;
return ValidationData(aggregator, validAfter, validUntil);
}
/**
* helper to pack the return value for validateUserOp
* @param data - the ValidationData to pack
*/
function _packValidationData(ValidationData memory data) pure returns (uint256) {
return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
}
/**
* helper to pack the return value for validateUserOp, when not using an aggregator
* @param sigFailed - true for signature failure, false for success
* @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
* @param validAfter first timestamp this UserOperation is valid
*/
function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
}
/**
* keccak function over calldata.
* @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
*/
function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
assembly {
let mem := mload(0x40)
let len := data.length
calldatacopy(mem, data.offset, len)
ret := keccak256(mem, len)
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
import "./UserOperation.sol";
/**
* Aggregated Signatures validator.
*/
interface IAggregator {
/**
* validate aggregated signature.
* revert if the aggregated signature does not match the given list of operations.
*/
function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view;
/**
* validate signature of a single userOp
* This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation
* First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
* @param userOp the userOperation received from the user.
* @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps.
* (usually empty, unless account and aggregator support some kind of "multisig"
*/
function validateUserOpSignature(UserOperation calldata userOp)
external view returns (bytes memory sigForUserOp);
/**
* aggregate multiple signatures into a single value.
* This method is called off-chain to calculate the signature to pass with handleOps()
* bundler MAY use optimized custom code perform this aggregation
* @param userOps array of UserOperations to collect the signatures from.
* @return aggregatedSignature the aggregated signature
*/
function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature);
}/**
** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
** Only one instance required on each chain.
**/
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-inline-assembly */
/* solhint-disable reason-string */
import "./UserOperation.sol";
import "./IStakeManager.sol";
import "./IAggregator.sol";
import "./INonceManager.sol";
interface IEntryPoint is IStakeManager, INonceManager {
/***
* An event emitted after each successful request
* @param userOpHash - unique identifier for the request (hash its entire content, except signature).
* @param sender - the account that generates this request.
* @param paymaster - if non-null, the paymaster that pays for this request.
* @param nonce - the nonce value from the request.
* @param success - true if the sender transaction succeeded, false if reverted.
* @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation.
* @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution).
*/
event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed);
/**
* account "sender" was deployed.
* @param userOpHash the userOp that deployed this account. UserOperationEvent will follow.
* @param sender the account that is deployed
* @param factory the factory used to deploy this account (in the initCode)
* @param paymaster the paymaster used by this UserOp
*/
event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster);
/**
* An event emitted if the UserOperation "callData" reverted with non-zero length
* @param userOpHash the request unique identifier.
* @param sender the sender of this request
* @param nonce the nonce used in the request
* @param revertReason - the return bytes from the (reverted) call to "callData".
*/
event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason);
/**
* an event emitted by handleOps(), before starting the execution loop.
* any event emitted before this event, is part of the validation.
*/
event BeforeExecution();
/**
* signature aggregator used by the following UserOperationEvents within this bundle.
*/
event SignatureAggregatorChanged(address indexed aggregator);
/**
* a custom revert error of handleOps, to identify the offending op.
* NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
* @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero)
* @param reason - revert reason
* The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
* so a failure can be attributed to the correct entity.
* Should be caught in off-chain handleOps simulation and not happen on-chain.
* Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
*/
error FailedOp(uint256 opIndex, string reason);
/**
* error case when a signature aggregator fails to verify the aggregated signature it had created.
*/
error SignatureValidationFailed(address aggregator);
/**
* Successful result from simulateValidation.
* @param returnInfo gas and time-range returned values
* @param senderInfo stake information about the sender
* @param factoryInfo stake information about the factory (if any)
* @param paymasterInfo stake information about the paymaster (if any)
*/
error ValidationResult(ReturnInfo returnInfo,
StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo);
/**
* Successful result from simulateValidation, if the account returns a signature aggregator
* @param returnInfo gas and time-range returned values
* @param senderInfo stake information about the sender
* @param factoryInfo stake information about the factory (if any)
* @param paymasterInfo stake information about the paymaster (if any)
* @param aggregatorInfo signature aggregation info (if the account requires signature aggregator)
* bundler MUST use it to verify the signature, or reject the UserOperation
*/
error ValidationResultWithAggregation(ReturnInfo returnInfo,
StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo,
AggregatorStakeInfo aggregatorInfo);
/**
* return value of getSenderAddress
*/
error SenderAddressResult(address sender);
/**
* return value of simulateHandleOp
*/
error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult);
//UserOps handled, per aggregator
struct UserOpsPerAggregator {
UserOperation[] userOps;
// aggregator address
IAggregator aggregator;
// aggregated signature
bytes signature;
}
/**
* Execute a batch of UserOperation.
* no signature aggregator is used.
* if any account requires an aggregator (that is, it returned an aggregator when
* performing simulateValidation), then handleAggregatedOps() must be used instead.
* @param ops the operations to execute
* @param beneficiary the address to receive the fees
*/
function handleOps(UserOperation[] calldata ops, address payable beneficiary) external;
/**
* Execute a batch of UserOperation with Aggregators
* @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
* @param beneficiary the address to receive the fees
*/
function handleAggregatedOps(
UserOpsPerAggregator[] calldata opsPerAggregator,
address payable beneficiary
) external;
/**
* generate a request Id - unique identifier for this request.
* the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
*/
function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32);
/**
* Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
* @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
* @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
* @param userOp the user operation to validate.
*/
function simulateValidation(UserOperation calldata userOp) external;
/**
* gas and return values during simulation
* @param preOpGas the gas used for validation (including preValidationGas)
* @param prefund the required prefund for this operation
* @param sigFailed validateUserOp's (or paymaster's) signature check failed
* @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range)
* @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range)
* @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp)
*/
struct ReturnInfo {
uint256 preOpGas;
uint256 prefund;
bool sigFailed;
uint48 validAfter;
uint48 validUntil;
bytes paymasterContext;
}
/**
* returned aggregated signature info.
* the aggregator returned by the account, and its current stake.
*/
struct AggregatorStakeInfo {
address aggregator;
StakeInfo stakeInfo;
}
/**
* Get counterfactual sender address.
* Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
* this method always revert, and returns the address in SenderAddressResult error
* @param initCode the constructor code to be passed into the UserOperation.
*/
function getSenderAddress(bytes memory initCode) external;
/**
* simulate full execution of a UserOperation (including both validation and target execution)
* this method will always revert with "ExecutionResult".
* it performs full validation of the UserOperation, but ignores signature error.
* an optional target address is called after the userop succeeds, and its value is returned
* (before the entire call is reverted)
* Note that in order to collect the the success/failure of the target call, it must be executed
* with trace enabled to track the emitted events.
* @param op the UserOperation to simulate
* @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult
* are set to the return from that call.
* @param targetCallData callData to pass to target address
*/
function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external;
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
interface INonceManager {
/**
* Return the next nonce for this sender.
* Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
* But UserOp with different keys can come with arbitrary order.
*
* @param sender the account address
* @param key the high 192 bit of the nonce
* @return nonce a full nonce to pass for next UserOp with this sender.
*/
function getNonce(address sender, uint192 key)
external view returns (uint256 nonce);
/**
* Manually increment the nonce of the sender.
* This method is exposed just for completeness..
* Account does NOT need to call it, neither during validation, nor elsewhere,
* as the EntryPoint will update the nonce regardless.
* Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
* UserOperations will not pay extra for the first transaction with a given key.
*/
function incrementNonce(uint192 key) external;
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
import "./UserOperation.sol";
/**
* the interface exposed by a paymaster contract, who agrees to pay the gas for user's operations.
* a paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
*/
interface IPaymaster {
enum PostOpMode {
opSucceeded, // user op succeeded
opReverted, // user op reverted. still has to pay for gas.
postOpReverted //user op succeeded, but caused postOp to revert. Now it's a 2nd call, after user's op was deliberately reverted.
}
/**
* payment validation: check if paymaster agrees to pay.
* Must verify sender is the entryPoint.
* Revert to reject this request.
* Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted)
* The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns.
* @param userOp the user operation
* @param userOpHash hash of the user's request data.
* @param maxCost the maximum cost of this transaction (based on maximum gas and gas price from userOp)
* @return context value to send to a postOp
* zero length to signify postOp is not required.
* @return validationData signature and time-range of this operation, encoded the same as the return value of validateUserOperation
* <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
* otherwise, an address of an "authorizer" contract.
* <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
* <6-byte> validAfter - first timestamp this operation is valid
* Note that the validation code cannot use block.timestamp (or block.number) directly.
*/
function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
external returns (bytes memory context, uint256 validationData);
/**
* post-operation handler.
* Must verify sender is the entryPoint
* @param mode enum with the following options:
* opSucceeded - user operation succeeded.
* opReverted - user op reverted. still has to pay for gas.
* postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
* Now this is the 2nd call, after user's op was deliberately reverted.
* @param context - the context value returned by validatePaymasterUserOp
* @param actualGasCost - actual gas used so far (without this postOp call).
*/
function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external;
}// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.12;
/**
* manage deposits and stakes.
* deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
* stake is value locked for at least "unstakeDelay" by the staked entity.
*/
interface IStakeManager {
event Deposited(
address indexed account,
uint256 totalDeposit
);
event Withdrawn(
address indexed account,
address withdrawAddress,
uint256 amount
);
/// Emitted when stake or unstake delay are modified
event StakeLocked(
address indexed account,
uint256 totalStaked,
uint256 unstakeDelaySec
);
/// Emitted once a stake is scheduled for withdrawal
event StakeUnlocked(
address indexed account,
uint256 withdrawTime
);
event StakeWithdrawn(
address indexed account,
address withdrawAddress,
uint256 amount
);
/**
* @param deposit the entity's deposit
* @param staked true if this entity is staked.
* @param stake actual amount of ether staked for this entity.
* @param unstakeDelaySec minimum delay to withdraw the stake.
* @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked
* @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps)
* and the rest fit into a 2nd cell.
* 112 bit allows for 10^15 eth
* 48 bit for full timestamp
* 32 bit allows 150 years for unstake delay
*/
struct DepositInfo {
uint112 deposit;
bool staked;
uint112 stake;
uint32 unstakeDelaySec;
uint48 withdrawTime;
}
//API struct used by getStakeInfo and simulateValidation
struct StakeInfo {
uint256 stake;
uint256 unstakeDelaySec;
}
/// @return info - full deposit information of given account
function getDepositInfo(address account) external view returns (DepositInfo memory info);
/// @return the deposit (for gas payment) of the account
function balanceOf(address account) external view returns (uint256);
/**
* add to the deposit of the given account
*/
function depositTo(address account) external payable;
/**
* add to the account's stake - amount and delay
* any pending unstake is first cancelled.
* @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn.
*/
function addStake(uint32 _unstakeDelaySec) external payable;
/**
* attempt to unlock the stake.
* the value can be withdrawn (using withdrawStake) after the unstake delay.
*/
function unlockStake() external;
/**
* withdraw from the (unlocked) stake.
* must first call unlockStake and wait for the unstakeDelay to pass
* @param withdrawAddress the address to send withdrawn value.
*/
function withdrawStake(address payable withdrawAddress) external;
/**
* withdraw from the deposit.
* @param withdrawAddress the address to send withdrawn value.
* @param withdrawAmount the amount to withdraw.
*/
function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
/* solhint-disable no-inline-assembly */
import {calldataKeccak} from "../core/Helpers.sol";
/**
* User Operation struct
* @param sender the sender account of this request.
* @param nonce unique value the sender uses to verify it is not a replay.
* @param initCode if set, the account contract will be created by this constructor/
* @param callData the method call to execute on this account.
* @param callGasLimit the gas limit passed to the callData method call.
* @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
* @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
* @param maxFeePerGas same as EIP-1559 gas parameter.
* @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
* @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
* @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
*/
struct UserOperation {
address sender;
uint256 nonce;
bytes initCode;
bytes callData;
uint256 callGasLimit;
uint256 verificationGasLimit;
uint256 preVerificationGas;
uint256 maxFeePerGas;
uint256 maxPriorityFeePerGas;
bytes paymasterAndData;
bytes signature;
}
/**
* Utility functions helpful when working with UserOperation structs.
*/
library UserOperationLib {
function getSender(UserOperation calldata userOp) internal pure returns (address) {
address data;
//read sender from userOp, which is first userOp member (saves 800 gas...)
assembly {data := calldataload(userOp)}
return address(uint160(data));
}
//relayer/block builder might submit the TX with higher priorityFee, but the user should not
// pay above what he signed for.
function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
unchecked {
uint256 maxFeePerGas = userOp.maxFeePerGas;
uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
if (maxFeePerGas == maxPriorityFeePerGas) {
//legacy mode (for networks that don't support basefee opcode)
return maxFeePerGas;
}
return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
}
}
function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
address sender = getSender(userOp);
uint256 nonce = userOp.nonce;
bytes32 hashInitCode = calldataKeccak(userOp.initCode);
bytes32 hashCallData = calldataKeccak(userOp.callData);
uint256 callGasLimit = userOp.callGasLimit;
uint256 verificationGasLimit = userOp.verificationGasLimit;
uint256 preVerificationGas = userOp.preVerificationGas;
uint256 maxFeePerGas = userOp.maxFeePerGas;
uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
return abi.encode(
sender, nonce,
hashInitCode, hashCallData,
callGasLimit, verificationGasLimit, preVerificationGas,
maxFeePerGas, maxPriorityFeePerGas,
hashPaymasterAndData
);
}
function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
return keccak256(pack(userOp));
}
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}{
"metadata": {
"bytecodeHash": "none",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 800
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract ABI
API[{"inputs":[{"internalType":"contract IEntryPoint","name":"_entryPoint","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"POST_OP_GAS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"uint48","name":"validAfter","type":"uint48"},{"internalType":"address","name":"erc20Token","type":"address"},{"internalType":"uint256","name":"exchangeRate","type":"uint256"}],"name":"getHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"paymasterAndData","type":"bytes"}],"name":"parsePaymasterAndData","outputs":[{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"uint48","name":"validAfter","type":"uint48"},{"internalType":"address","name":"erc20Token","type":"address"},{"internalType":"uint256","name":"exchangeRate","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"senderNonce","outputs":[{"internalType":"uint256","name":"nonce","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTo","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60a06040523480156200001157600080fd5b50604051620018f6380380620018f68339810160408190526200003491620000c8565b8162000040336200005f565b6001600160a01b031660805262000057816200005f565b505062000107565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b0381168114620000c557600080fd5b50565b60008060408385031215620000dc57600080fd5b8251620000e981620000af565b6020840151909250620000fc81620000af565b809150509250929050565b6080516117a2620001546000396000818161023801528181610332015281816103c9015281816104ef01528181610583015281816105fa01528181610687015261089901526117a26000f3fe6080604052600436106100f35760003560e01c8063b0d691fe1161008a578063c399ec8811610059578063c399ec88146102a5578063d0e30db0146102ba578063f2fde38b146102c2578063f465c77e146102e257600080fd5b8063b0d691fe14610226578063b8202d8f1461025a578063bb9fe6bf14610270578063c23a5cea1461028557600080fd5b80638da5cb5b116100c65780638da5cb5b1461017557806394d4ad60146101a75780639c90b443146101d9578063a9a234091461020657600080fd5b80630396cb60146100f8578063205c28781461010d578063290da2ad1461012d578063715018a614610160575b600080fd5b61010b6101063660046111ee565b610310565b005b34801561011957600080fd5b5061010b610128366004611230565b61039b565b34801561013957600080fd5b5061014d610148366004611290565b61040d565b6040519081526020015b60405180910390f35b34801561016c57600080fd5b5061010b610470565b34801561018157600080fd5b506000546001600160a01b03165b6040516001600160a01b039091168152602001610157565b3480156101b357600080fd5b506101c76101c236600461134b565b610484565b6040516101579695949392919061138d565b3480156101e557600080fd5b5061014d6101f43660046113f0565b60016020526000908152604090205481565b34801561021257600080fd5b5061010b61022136600461140d565b6104cb565b34801561023257600080fd5b5061018f7f000000000000000000000000000000000000000000000000000000000000000081565b34801561026657600080fd5b5061014d6188b881565b34801561027c57600080fd5b5061010b6104e5565b34801561029157600080fd5b5061010b6102a03660046113f0565b61055c565b3480156102b157600080fd5b5061014d6105e2565b61010b610672565b3480156102ce57600080fd5b5061010b6102dd3660046113f0565b6106d4565b3480156102ee57600080fd5b506103026102fd36600461146d565b610769565b60405161015792919061150b565b61031861078d565b604051621cb65b60e51b815263ffffffff821660048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690630396cb609034906024016000604051808303818588803b15801561037f57600080fd5b505af1158015610393573d6000803e3d6000fd5b505050505050565b6103a361078d565b60405163040b850f60e31b81526001600160a01b038381166004830152602482018390527f0000000000000000000000000000000000000000000000000000000000000000169063205c287890604401600060405180830381600087803b15801561037f57600080fd5b6000610418866107e7565b6001600160a01b0387351660009081526001602090815260409182902054915161044f9392469230928b918b918b918b910161152d565b60405160208183030381529060405280519060200120905095945050505050565b61047861078d565b6104826000610826565b565b6000808080368161049960946014898b61158b565b8101906104a691906115b5565b929850909650945092506104bd876094818b61158b565b915091509295509295509295565b6104d361088e565b6104df84848484610906565b50505050565b6104ed61078d565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b8152600401600060405180830381600087803b15801561054857600080fd5b505af11580156104df573d6000803e3d6000fd5b61056461078d565b60405163611d2e7560e11b81526001600160a01b0382811660048301527f0000000000000000000000000000000000000000000000000000000000000000169063c23a5cea90602401600060405180830381600087803b1580156105c757600080fd5b505af11580156105db573d6000803e3d6000fd5b5050505050565b6040516370a0823160e01b81523060048201526000907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610649573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061066d9190611602565b905090565b60405163b760faf960e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063b760faf99034906024016000604051808303818588803b1580156105c757600080fd5b6106dc61078d565b6001600160a01b03811661075d5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b61076681610826565b50565b6060600061077561088e565b6107808585856109c7565b915091505b935093915050565b6000546001600160a01b031633146104825760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610754565b60603660006107fa61012085018561161b565b915091508360208184030360405194506020810185016040528085528082602087013750505050919050565b600080546001600160a01b038381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146104825760405162461bcd60e51b815260206004820152601560248201527f53656e646572206e6f7420456e747279506f696e7400000000000000000000006044820152606401610754565b60008080808061091887890189611662565b945094509450945094506000818303610932575081610941565b61093e83488401610c25565b90505b6000670de0b6b3a764000085610959846188b86116c9565b610963908b6116e0565b61096d91906116c9565b61097791906116f3565b905060028b600281111561098d5761098d611715565b146109ba576109ba876109a86000546001600160a01b031690565b6001600160a01b038916919084610c3f565b5050505050505050505050565b606060008080808036816109e26101c26101208d018d61161b565b9550955095509550955095508181905060401480610a005750604181145b610a74576040805162461bcd60e51b81526020600482015260248101919091527f566572696679696e675061796d61737465723a20696e76616c6964207369676e60448201527f6174757265206c656e67746820696e207061796d6173746572416e64446174616064820152608401610754565b6000610ad9610a868d8989898961040d565b6040517f19457468657265756d205369676e6564204d6573736167653a0a3332000000006020820152603c8101829052600090605c01604051602081830303815290604052805190602001209050919050565b6001600160a01b038d35166000908152600160205260408120805492935090610b018361172b565b909155505060408051602081019091526000815298506001600160a01b03851615610b7f57610b3360208d018d6113f0565b604080516001600160a01b039283166020820152918716908201526060810185905260e08d013560808201526101008d013560a082015260c00160405160208183030381529060405298505b610bbf8184848080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610cae92505050565b6001600160a01b0316610bda6000546001600160a01b031690565b6001600160a01b031614610c055788610bf560018989610cd2565b9850985050505050505050610785565b88610c1260008989610cd2565b9850985050505050505050935093915050565b6000818310610c345781610c36565b825b90505b92915050565b604080516001600160a01b0385811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff166323b872dd60e01b1790526104df908590610d0a565b6000806000610cbd8585610df4565b91509150610cca81610e39565b509392505050565b600060d08265ffffffffffff16901b60a08465ffffffffffff16901b85610cfa576000610cfd565b60015b60ff161717949350505050565b6000610d5f826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316610f839092919063ffffffff16565b805190915015610def5780806020019051810190610d7d9190611744565b610def5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610754565b505050565b6000808251604103610e2a5760208301516040840151606085015160001a610e1e87828585610f9a565b94509450505050610e32565b506000905060025b9250929050565b6000816004811115610e4d57610e4d611715565b03610e555750565b6001816004811115610e6957610e69611715565b03610eb65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610754565b6002816004811115610eca57610eca611715565b03610f175760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610754565b6003816004811115610f2b57610f2b611715565b036107665760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610754565b6060610f92848460008561105e565b949350505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610fd15750600090506003611055565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015611025573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661104e57600060019250925050611055565b9150600090505b94509492505050565b6060824710156110d65760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610754565b600080866001600160a01b031685876040516110f29190611766565b60006040518083038185875af1925050503d806000811461112f576040519150601f19603f3d011682016040523d82523d6000602084013e611134565b606091505b509150915061114587838387611150565b979650505050505050565b606083156111bf5782516000036111b8576001600160a01b0385163b6111b85760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610754565b5081610f92565b610f9283838151156111d45781518083602001fd5b8060405162461bcd60e51b81526004016107549190611782565b60006020828403121561120057600080fd5b813563ffffffff8116811461121457600080fd5b9392505050565b6001600160a01b038116811461076657600080fd5b6000806040838503121561124357600080fd5b823561124e8161121b565b946020939093013593505050565b6000610160828403121561126f57600080fd5b50919050565b803565ffffffffffff8116811461128b57600080fd5b919050565b600080600080600060a086880312156112a857600080fd5b853567ffffffffffffffff8111156112bf57600080fd5b6112cb8882890161125c565b9550506112da60208701611275565b93506112e860408701611275565b925060608601356112f88161121b565b949793965091946080013592915050565b60008083601f84011261131b57600080fd5b50813567ffffffffffffffff81111561133357600080fd5b602083019150836020828501011115610e3257600080fd5b6000806020838503121561135e57600080fd5b823567ffffffffffffffff81111561137557600080fd5b61138185828601611309565b90969095509350505050565b600065ffffffffffff80891683528088166020840152506001600160a01b038616604083015284606083015260a060808301528260a0830152828460c0840137600060c0848401015260c0601f19601f8501168301019050979650505050505050565b60006020828403121561140257600080fd5b81356112148161121b565b6000806000806060858703121561142357600080fd5b84356003811061143257600080fd5b9350602085013567ffffffffffffffff81111561144e57600080fd5b61145a87828801611309565b9598909750949560400135949350505050565b60008060006060848603121561148257600080fd5b833567ffffffffffffffff81111561149957600080fd5b6114a58682870161125c565b9660208601359650604090950135949350505050565b60005b838110156114d65781810151838201526020016114be565b50506000910152565b600081518084526114f78160208601602086016114bb565b601f01601f19169290920160200192915050565b60408152600061151e60408301856114df565b90508260208301529392505050565b60006101008083526115418184018c6114df565b602084019a909a5250506001600160a01b039687166040820152606081019590955265ffffffffffff93841660808601529190921660a0840152921660c082015260e00152919050565b6000808585111561159b57600080fd5b838611156115a857600080fd5b5050820193919092039150565b600080600080608085870312156115cb57600080fd5b6115d485611275565b93506115e260208601611275565b925060408501356115f28161121b565b9396929550929360600135925050565b60006020828403121561161457600080fd5b5051919050565b6000808335601e1984360301811261163257600080fd5b83018035915067ffffffffffffffff82111561164d57600080fd5b602001915036819003821315610e3257600080fd5b600080600080600060a0868803121561167a57600080fd5b85356116858161121b565b945060208601356116958161121b565b94979496505050506040830135926060810135926080909101359150565b634e487b7160e01b600052601160045260246000fd5b8082028115828204841417610c3957610c396116b3565b80820180821115610c3957610c396116b3565b60008261171057634e487b7160e01b600052601260045260246000fd5b500490565b634e487b7160e01b600052602160045260246000fd5b60006001820161173d5761173d6116b3565b5060010190565b60006020828403121561175657600080fd5b8151801515811461121457600080fd5b600082516117788184602087016114bb565b9190910192915050565b602081526000610c3660208301846114df56fea164736f6c6343000813000a0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27890000000000000000000000008cf905c50f25a481171e7f5936625754d44a9537
Deployed Bytecode
0x6080604052600436106100f35760003560e01c8063b0d691fe1161008a578063c399ec8811610059578063c399ec88146102a5578063d0e30db0146102ba578063f2fde38b146102c2578063f465c77e146102e257600080fd5b8063b0d691fe14610226578063b8202d8f1461025a578063bb9fe6bf14610270578063c23a5cea1461028557600080fd5b80638da5cb5b116100c65780638da5cb5b1461017557806394d4ad60146101a75780639c90b443146101d9578063a9a234091461020657600080fd5b80630396cb60146100f8578063205c28781461010d578063290da2ad1461012d578063715018a614610160575b600080fd5b61010b6101063660046111ee565b610310565b005b34801561011957600080fd5b5061010b610128366004611230565b61039b565b34801561013957600080fd5b5061014d610148366004611290565b61040d565b6040519081526020015b60405180910390f35b34801561016c57600080fd5b5061010b610470565b34801561018157600080fd5b506000546001600160a01b03165b6040516001600160a01b039091168152602001610157565b3480156101b357600080fd5b506101c76101c236600461134b565b610484565b6040516101579695949392919061138d565b3480156101e557600080fd5b5061014d6101f43660046113f0565b60016020526000908152604090205481565b34801561021257600080fd5b5061010b61022136600461140d565b6104cb565b34801561023257600080fd5b5061018f7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278981565b34801561026657600080fd5b5061014d6188b881565b34801561027c57600080fd5b5061010b6104e5565b34801561029157600080fd5b5061010b6102a03660046113f0565b61055c565b3480156102b157600080fd5b5061014d6105e2565b61010b610672565b3480156102ce57600080fd5b5061010b6102dd3660046113f0565b6106d4565b3480156102ee57600080fd5b506103026102fd36600461146d565b610769565b60405161015792919061150b565b61031861078d565b604051621cb65b60e51b815263ffffffff821660048201527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b031690630396cb609034906024016000604051808303818588803b15801561037f57600080fd5b505af1158015610393573d6000803e3d6000fd5b505050505050565b6103a361078d565b60405163040b850f60e31b81526001600160a01b038381166004830152602482018390527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789169063205c287890604401600060405180830381600087803b15801561037f57600080fd5b6000610418866107e7565b6001600160a01b0387351660009081526001602090815260409182902054915161044f9392469230928b918b918b918b910161152d565b60405160208183030381529060405280519060200120905095945050505050565b61047861078d565b6104826000610826565b565b6000808080368161049960946014898b61158b565b8101906104a691906115b5565b929850909650945092506104bd876094818b61158b565b915091509295509295509295565b6104d361088e565b6104df84848484610906565b50505050565b6104ed61078d565b7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b8152600401600060405180830381600087803b15801561054857600080fd5b505af11580156104df573d6000803e3d6000fd5b61056461078d565b60405163611d2e7560e11b81526001600160a01b0382811660048301527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789169063c23a5cea90602401600060405180830381600087803b1580156105c757600080fd5b505af11580156105db573d6000803e3d6000fd5b5050505050565b6040516370a0823160e01b81523060048201526000907f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b0316906370a0823190602401602060405180830381865afa158015610649573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061066d9190611602565b905090565b60405163b760faf960e01b81523060048201527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b03169063b760faf99034906024016000604051808303818588803b1580156105c757600080fd5b6106dc61078d565b6001600160a01b03811661075d5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b61076681610826565b50565b6060600061077561088e565b6107808585856109c7565b915091505b935093915050565b6000546001600160a01b031633146104825760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610754565b60603660006107fa61012085018561161b565b915091508360208184030360405194506020810185016040528085528082602087013750505050919050565b600080546001600160a01b038381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b336001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916146104825760405162461bcd60e51b815260206004820152601560248201527f53656e646572206e6f7420456e747279506f696e7400000000000000000000006044820152606401610754565b60008080808061091887890189611662565b945094509450945094506000818303610932575081610941565b61093e83488401610c25565b90505b6000670de0b6b3a764000085610959846188b86116c9565b610963908b6116e0565b61096d91906116c9565b61097791906116f3565b905060028b600281111561098d5761098d611715565b146109ba576109ba876109a86000546001600160a01b031690565b6001600160a01b038916919084610c3f565b5050505050505050505050565b606060008080808036816109e26101c26101208d018d61161b565b9550955095509550955095508181905060401480610a005750604181145b610a74576040805162461bcd60e51b81526020600482015260248101919091527f566572696679696e675061796d61737465723a20696e76616c6964207369676e60448201527f6174757265206c656e67746820696e207061796d6173746572416e64446174616064820152608401610754565b6000610ad9610a868d8989898961040d565b6040517f19457468657265756d205369676e6564204d6573736167653a0a3332000000006020820152603c8101829052600090605c01604051602081830303815290604052805190602001209050919050565b6001600160a01b038d35166000908152600160205260408120805492935090610b018361172b565b909155505060408051602081019091526000815298506001600160a01b03851615610b7f57610b3360208d018d6113f0565b604080516001600160a01b039283166020820152918716908201526060810185905260e08d013560808201526101008d013560a082015260c00160405160208183030381529060405298505b610bbf8184848080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610cae92505050565b6001600160a01b0316610bda6000546001600160a01b031690565b6001600160a01b031614610c055788610bf560018989610cd2565b9850985050505050505050610785565b88610c1260008989610cd2565b9850985050505050505050935093915050565b6000818310610c345781610c36565b825b90505b92915050565b604080516001600160a01b0385811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff166323b872dd60e01b1790526104df908590610d0a565b6000806000610cbd8585610df4565b91509150610cca81610e39565b509392505050565b600060d08265ffffffffffff16901b60a08465ffffffffffff16901b85610cfa576000610cfd565b60015b60ff161717949350505050565b6000610d5f826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316610f839092919063ffffffff16565b805190915015610def5780806020019051810190610d7d9190611744565b610def5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610754565b505050565b6000808251604103610e2a5760208301516040840151606085015160001a610e1e87828585610f9a565b94509450505050610e32565b506000905060025b9250929050565b6000816004811115610e4d57610e4d611715565b03610e555750565b6001816004811115610e6957610e69611715565b03610eb65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610754565b6002816004811115610eca57610eca611715565b03610f175760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610754565b6003816004811115610f2b57610f2b611715565b036107665760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610754565b6060610f92848460008561105e565b949350505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610fd15750600090506003611055565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015611025573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661104e57600060019250925050611055565b9150600090505b94509492505050565b6060824710156110d65760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610754565b600080866001600160a01b031685876040516110f29190611766565b60006040518083038185875af1925050503d806000811461112f576040519150601f19603f3d011682016040523d82523d6000602084013e611134565b606091505b509150915061114587838387611150565b979650505050505050565b606083156111bf5782516000036111b8576001600160a01b0385163b6111b85760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610754565b5081610f92565b610f9283838151156111d45781518083602001fd5b8060405162461bcd60e51b81526004016107549190611782565b60006020828403121561120057600080fd5b813563ffffffff8116811461121457600080fd5b9392505050565b6001600160a01b038116811461076657600080fd5b6000806040838503121561124357600080fd5b823561124e8161121b565b946020939093013593505050565b6000610160828403121561126f57600080fd5b50919050565b803565ffffffffffff8116811461128b57600080fd5b919050565b600080600080600060a086880312156112a857600080fd5b853567ffffffffffffffff8111156112bf57600080fd5b6112cb8882890161125c565b9550506112da60208701611275565b93506112e860408701611275565b925060608601356112f88161121b565b949793965091946080013592915050565b60008083601f84011261131b57600080fd5b50813567ffffffffffffffff81111561133357600080fd5b602083019150836020828501011115610e3257600080fd5b6000806020838503121561135e57600080fd5b823567ffffffffffffffff81111561137557600080fd5b61138185828601611309565b90969095509350505050565b600065ffffffffffff80891683528088166020840152506001600160a01b038616604083015284606083015260a060808301528260a0830152828460c0840137600060c0848401015260c0601f19601f8501168301019050979650505050505050565b60006020828403121561140257600080fd5b81356112148161121b565b6000806000806060858703121561142357600080fd5b84356003811061143257600080fd5b9350602085013567ffffffffffffffff81111561144e57600080fd5b61145a87828801611309565b9598909750949560400135949350505050565b60008060006060848603121561148257600080fd5b833567ffffffffffffffff81111561149957600080fd5b6114a58682870161125c565b9660208601359650604090950135949350505050565b60005b838110156114d65781810151838201526020016114be565b50506000910152565b600081518084526114f78160208601602086016114bb565b601f01601f19169290920160200192915050565b60408152600061151e60408301856114df565b90508260208301529392505050565b60006101008083526115418184018c6114df565b602084019a909a5250506001600160a01b039687166040820152606081019590955265ffffffffffff93841660808601529190921660a0840152921660c082015260e00152919050565b6000808585111561159b57600080fd5b838611156115a857600080fd5b5050820193919092039150565b600080600080608085870312156115cb57600080fd5b6115d485611275565b93506115e260208601611275565b925060408501356115f28161121b565b9396929550929360600135925050565b60006020828403121561161457600080fd5b5051919050565b6000808335601e1984360301811261163257600080fd5b83018035915067ffffffffffffffff82111561164d57600080fd5b602001915036819003821315610e3257600080fd5b600080600080600060a0868803121561167a57600080fd5b85356116858161121b565b945060208601356116958161121b565b94979496505050506040830135926060810135926080909101359150565b634e487b7160e01b600052601160045260246000fd5b8082028115828204841417610c3957610c396116b3565b80820180821115610c3957610c396116b3565b60008261171057634e487b7160e01b600052601260045260246000fd5b500490565b634e487b7160e01b600052602160045260246000fd5b60006001820161173d5761173d6116b3565b5060010190565b60006020828403121561175657600080fd5b8151801515811461121457600080fd5b600082516117788184602087016114bb565b9190910192915050565b602081526000610c3660208301846114df56fea164736f6c6343000813000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27890000000000000000000000008cf905c50f25a481171e7f5936625754d44a9537
-----Decoded View---------------
Arg [0] : _entryPoint (address): 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789
Arg [1] : _owner (address): 0x8cF905C50F25A481171e7f5936625754d44A9537
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Arg [1] : 0000000000000000000000008cf905c50f25a481171e7f5936625754d44a9537
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.