Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
7452590 | 307 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
SablierV2Batch
Compiler Version
v0.8.23+commit.f704f362
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol"; import { ISablierV2LockupDynamic } from "@sablier/v2-core/src/interfaces/ISablierV2LockupDynamic.sol"; import { LockupDynamic, LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol"; import { ISablierV2Batch } from "./interfaces/ISablierV2Batch.sol"; import { Errors } from "./libraries/Errors.sol"; import { Batch } from "./types/DataTypes.sol"; /// @title SablierV2Batch /// @notice See the documentation in {ISablierV2Batch}. contract SablierV2Batch is ISablierV2Batch { using SafeERC20 for IERC20; /*////////////////////////////////////////////////////////////////////////// SABLIER-V2-LOCKUP-LINEAR //////////////////////////////////////////////////////////////////////////*/ /// @inheritdoc ISablierV2Batch function createWithDurations( ISablierV2LockupLinear lockupLinear, IERC20 asset, Batch.CreateWithDurations[] calldata batch ) external override returns (uint256[] memory streamIds) { // Check that the batch size is not zero. uint256 batchSize = batch.length; if (batchSize == 0) { revert Errors.SablierV2Batch_BatchSizeZero(); } // Calculate the sum of all of stream amounts. It is safe to use unchecked addition because one of the create // transactions will revert if there is overflow. uint256 i; uint256 transferAmount; for (i = 0; i < batchSize;) { unchecked { transferAmount += batch[i].totalAmount; i += 1; } } // Transfers the assets to the batch and approves the Sablier contract to spend them. _handleTransfer(address(lockupLinear), asset, transferAmount); // Create a stream for each element in the parameter array. streamIds = new uint256[](batchSize); for (i = 0; i < batchSize;) { // Create the stream. streamIds[i] = lockupLinear.createWithDurations( LockupLinear.CreateWithDurations({ asset: asset, broker: batch[i].broker, cancelable: batch[i].cancelable, durations: batch[i].durations, recipient: batch[i].recipient, sender: batch[i].sender, totalAmount: batch[i].totalAmount, transferable: batch[i].transferable }) ); // Increment the for loop iterator. unchecked { i += 1; } } } /// @inheritdoc ISablierV2Batch function createWithRange( ISablierV2LockupLinear lockupLinear, IERC20 asset, Batch.CreateWithRange[] calldata batch ) external override returns (uint256[] memory streamIds) { // Check that the batch is not empty. uint256 batchSize = batch.length; if (batchSize == 0) { revert Errors.SablierV2Batch_BatchSizeZero(); } // Calculate the sum of all of stream amounts. It is safe to use unchecked addition because one of the create // transactions will revert if there is overflow. uint256 i; uint256 transferAmount; for (i = 0; i < batchSize;) { unchecked { transferAmount += batch[i].totalAmount; i += 1; } } // Transfers the assets to the batch and approve the Sablier contract to spend them. _handleTransfer(address(lockupLinear), asset, transferAmount); // Create a stream for each element in the parameter array. streamIds = new uint256[](batchSize); for (i = 0; i < batchSize;) { // Create the stream. streamIds[i] = lockupLinear.createWithRange( LockupLinear.CreateWithRange({ asset: asset, broker: batch[i].broker, cancelable: batch[i].cancelable, range: batch[i].range, recipient: batch[i].recipient, sender: batch[i].sender, totalAmount: batch[i].totalAmount, transferable: batch[i].transferable }) ); // Increment the for loop iterator. unchecked { i += 1; } } } /*////////////////////////////////////////////////////////////////////////// SABLIER-V2-LOCKUP-DYNAMIC //////////////////////////////////////////////////////////////////////////*/ /// @inheritdoc ISablierV2Batch function createWithDeltas( ISablierV2LockupDynamic lockupDynamic, IERC20 asset, Batch.CreateWithDeltas[] calldata batch ) external override returns (uint256[] memory streamIds) { // Check that the batch size is not zero. uint256 batchSize = batch.length; if (batchSize == 0) { revert Errors.SablierV2Batch_BatchSizeZero(); } // Calculate the sum of all of stream amounts. It is safe to use unchecked addition because one of the create // transactions will revert if there is overflow. uint256 i; uint256 transferAmount; for (i = 0; i < batchSize;) { unchecked { transferAmount += batch[i].totalAmount; i += 1; } } // Perform the ERC-20 transfer and approve {SablierV2LockupDynamic} to spend the amount of assets. _handleTransfer(address(lockupDynamic), asset, transferAmount); // Create a stream for each element in the parameter array. streamIds = new uint256[](batchSize); for (i = 0; i < batchSize;) { // Create the stream. streamIds[i] = lockupDynamic.createWithDeltas( LockupDynamic.CreateWithDeltas({ asset: asset, broker: batch[i].broker, cancelable: batch[i].cancelable, recipient: batch[i].recipient, segments: batch[i].segments, sender: batch[i].sender, totalAmount: batch[i].totalAmount, transferable: batch[i].transferable }) ); // Increment the for loop iterator. unchecked { i += 1; } } } /// @inheritdoc ISablierV2Batch function createWithMilestones( ISablierV2LockupDynamic lockupDynamic, IERC20 asset, Batch.CreateWithMilestones[] calldata batch ) external override returns (uint256[] memory streamIds) { // Check that the batch size is not zero. uint256 batchSize = batch.length; if (batchSize == 0) { revert Errors.SablierV2Batch_BatchSizeZero(); } // Calculate the sum of all of stream amounts. It is safe to use unchecked addition because one of the create // transactions will revert if there is overflow. uint256 i; uint256 transferAmount; for (i = 0; i < batchSize;) { unchecked { transferAmount += batch[i].totalAmount; i += 1; } } // Perform the ERC-20 transfer and approve {SablierV2LockupDynamic} to spend the amount of assets. _handleTransfer(address(lockupDynamic), asset, transferAmount); // Create a stream for each element in the parameter array. streamIds = new uint256[](batchSize); for (i = 0; i < batchSize;) { // Create the stream. streamIds[i] = lockupDynamic.createWithMilestones( LockupDynamic.CreateWithMilestones({ asset: asset, broker: batch[i].broker, cancelable: batch[i].cancelable, recipient: batch[i].recipient, segments: batch[i].segments, sender: batch[i].sender, startTime: batch[i].startTime, totalAmount: batch[i].totalAmount, transferable: batch[i].transferable }) ); // Increment the for loop iterator. unchecked { i += 1; } } } /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @dev Helper function to approve a Sablier contract to spend funds from the batch. If the current allowance /// is insufficient, this function approves Sablier to spend the exact `amount`. /// The {SafeERC20.forceApprove} function is used to handle special ERC-20 assets (e.g. USDT) that require the /// current allowance to be zero before setting it to a non-zero value. function _approve(address sablierContract, IERC20 asset, uint256 amount) internal { uint256 allowance = asset.allowance({ owner: address(this), spender: sablierContract }); if (allowance < amount) { asset.forceApprove({ spender: sablierContract, value: amount }); } } /// @dev Helper function to transfer assets from the caller to the batch contract and approve the Sablier contract. function _handleTransfer(address sablierContract, IERC20 asset, uint256 amount) internal { // Transfer the assets to the batch contract. asset.safeTransferFrom({ from: msg.sender, to: address(this), value: amount }); // Approve the Sablier contract to spend funds. _approve(sablierContract, asset, amount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { Lockup, LockupLinear } from "../types/DataTypes.sol"; import { ISablierV2Lockup } from "./ISablierV2Lockup.sol"; /// @title ISablierV2LockupLinear /// @notice Creates and manages Lockup streams with linear streaming functions. interface ISablierV2LockupLinear is ISablierV2Lockup { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when a stream is created. /// @param streamId The id of the newly created stream. /// @param funder The address which funded the stream. /// @param sender The address streaming the assets, with the ability to cancel the stream. /// @param recipient The address receiving the assets. /// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the /// broker fee amount, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Boolean indicating whether the stream will be cancelable or not. /// @param transferable Boolean indicating whether the stream NFT is transferable or not. /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix /// timestamps. /// @param broker The address of the broker who has helped create the stream, e.g. a front-end website. event CreateLockupLinearStream( uint256 streamId, address funder, address indexed sender, address indexed recipient, Lockup.CreateAmounts amounts, IERC20 indexed asset, bool cancelable, bool transferable, LockupLinear.Range range, address broker ); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the stream's cliff time, which is a Unix timestamp. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getCliffTime(uint256 streamId) external view returns (uint40 cliffTime); /// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time, (ii) cliff /// time, and (iii) end time, all as Unix timestamps. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getRange(uint256 streamId) external view returns (LockupLinear.Range memory range); /// @notice Retrieves the stream entity. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getStream(uint256 streamId) external view returns (LockupLinear.Stream memory stream); /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals. /// /// When the stream is warm, the streaming function is: /// /// $$ /// f(x) = x * d + c /// $$ /// /// Where: /// /// - $x$ is the elapsed time divided by the stream's total duration. /// - $d$ is the deposited amount. /// - $c$ is the cliff amount. /// /// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited /// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent /// to the total amount withdrawn. /// /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to /// the sum of `block.timestamp` and `params.durations.total`. The stream is funded by `msg.sender` and is wrapped /// in an ERC-721 NFT. /// /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event. /// /// Requirements: /// - All requirements in {createWithRange} must be met for the calculated parameters. /// /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}. /// @return streamId The id of the newly created stream. function createWithDurations(LockupLinear.CreateWithDurations calldata params) external returns (uint256 streamId); /// @notice Creates a stream with the provided start time and end time as the range. The stream is /// funded by `msg.sender` and is wrapped in an ERC-721 NFT. /// /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event. /// /// Notes: /// - As long as the times are ordered, it is not an error for the start or the cliff time to be in the past. /// /// Requirements: /// - Must not be delegate called. /// - `params.totalAmount` must be greater than zero. /// - If set, `params.broker.fee` must not be greater than `MAX_FEE`. /// - `params.range.start` must be less than or equal to `params.range.cliff`. /// - `params.range.cliff` must be less than `params.range.end`. /// - `params.range.end` must be in the future. /// - `params.recipient` must not be the zero address. /// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets. /// /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}. /// @return streamId The id of the newly created stream. function createWithRange(LockupLinear.CreateWithRange calldata params) external returns (uint256 streamId); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { Lockup, LockupDynamic } from "../types/DataTypes.sol"; import { ISablierV2Lockup } from "./ISablierV2Lockup.sol"; /// @title ISablierV2LockupDynamic /// @notice Creates and manages Lockup streams with dynamic streaming functions. interface ISablierV2LockupDynamic is ISablierV2Lockup { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when a stream is created. /// @param streamId The id of the newly created stream. /// @param funder The address which has funded the stream. /// @param sender The address from which to stream the assets, who will have the ability to cancel the stream. /// @param recipient The address toward which to stream the assets. /// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the /// broker fee amount, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Boolean indicating whether the stream will be cancelable or not. /// @param transferable Boolean indicating whether the stream NFT is transferable or not. /// @param segments The segments the protocol uses to compose the custom streaming curve. /// @param range Struct containing (i) the stream's start time and (ii) end time, both as Unix timestamps. /// @param broker The address of the broker who has helped create the stream, e.g. a front-end website. event CreateLockupDynamicStream( uint256 streamId, address funder, address indexed sender, address indexed recipient, Lockup.CreateAmounts amounts, IERC20 indexed asset, bool cancelable, bool transferable, LockupDynamic.Segment[] segments, LockupDynamic.Range range, address broker ); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice The maximum number of segments allowed in a stream. /// @dev This is initialized at construction time and cannot be changed later. function MAX_SEGMENT_COUNT() external view returns (uint256); /// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time and (ii) end /// time, both as Unix timestamps. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getRange(uint256 streamId) external view returns (LockupDynamic.Range memory range); /// @notice Retrieves the segments the protocol uses to compose the custom streaming curve. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getSegments(uint256 streamId) external view returns (LockupDynamic.Segment[] memory segments); /// @notice Retrieves the stream entity. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getStream(uint256 streamId) external view returns (LockupDynamic.Stream memory stream); /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals. /// /// When the stream is warm, the streaming function is: /// /// $$ /// f(x) = x^{exp} * csa + \Sigma(esa) /// $$ /// /// Where: /// /// - $x$ is the elapsed time divided by the total time in the current segment. /// - $exp$ is the current segment exponent. /// - $csa$ is the current segment amount. /// - $\Sigma(esa)$ is the sum of all elapsed segments' amounts. /// /// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited /// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent /// to the total amount withdrawn. /// /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to the sum of /// `block.timestamp` and all specified time deltas. The segment milestones are derived from these /// deltas. The stream is funded by `msg.sender` and is wrapped in an ERC-721 NFT. /// /// @dev Emits a {Transfer} and {CreateLockupDynamicStream} event. /// /// Requirements: /// - All requirements in {createWithMilestones} must be met for the calculated parameters. /// /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}. /// @return streamId The id of the newly created stream. function createWithDeltas(LockupDynamic.CreateWithDeltas calldata params) external returns (uint256 streamId); /// @notice Creates a stream with the provided segment milestones, implying the end time from the last milestone. /// The stream is funded by `msg.sender` and is wrapped in an ERC-721 NFT. /// /// @dev Emits a {Transfer} and {CreateLockupDynamicStream} event. /// /// Notes: /// - As long as the segment milestones are arranged in ascending order, it is not an error for some /// of them to be in the past. /// /// Requirements: /// - Must not be delegate called. /// - `params.totalAmount` must be greater than zero. /// - If set, `params.broker.fee` must not be greater than `MAX_FEE`. /// - `params.segments` must have at least one segment, but not more than `MAX_SEGMENT_COUNT`. /// - `params.startTime` must be less than the first segment's milestone. /// - The segment milestones must be arranged in ascending order. /// - The last segment milestone (i.e. the stream's end time) must be in the future. /// - The sum of the segment amounts must equal the deposit amount. /// - `params.recipient` must not be the zero address. /// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets. /// /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}. /// @return streamId The id of the newly created stream. function createWithMilestones(LockupDynamic.CreateWithMilestones calldata params) external returns (uint256 streamId); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { UD2x18 } from "@prb/math/src/UD2x18.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; // DataTypes.sol // // This file defines all structs used in V2 Core, most of which are organized under three namespaces: // // - Lockup // - LockupDynamic // - LockupLinear // // You will notice that some structs contain "slot" annotations - they are used to indicate the // storage layout of the struct. It is more gas efficient to group small data types together so // that they fit in a single 32-byte slot. /// @notice Struct encapsulating the broker parameters passed to the create functions. Both can be set to zero. /// @param account The address receiving the broker's fee. /// @param fee The broker's percentage fee from the total amount, denoted as a fixed-point number where 1e18 is 100%. struct Broker { address account; UD60x18 fee; } /// @notice Namespace for the structs used in both {SablierV2LockupLinear} and {SablierV2LockupDynamic}. library Lockup { /// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units /// of the asset's decimals. /// @dev Because the deposited and the withdrawn amount are often read together, declaring them in /// the same slot saves gas. /// @param deposited The initial amount deposited in the stream, net of fees. /// @param withdrawn The cumulative amount withdrawn from the stream. /// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero. struct Amounts { // slot 0 uint128 deposited; uint128 withdrawn; // slot 1 uint128 refunded; } /// @notice Struct encapsulating the deposit amount, the protocol fee amount, and the broker fee amount, /// all denoted in units of the asset's decimals. /// @param deposit The amount to deposit in the stream. /// @param protocolFee The protocol fee amount. /// @param brokerFee The broker fee amount. struct CreateAmounts { uint128 deposit; uint128 protocolFee; uint128 brokerFee; } /// @notice Enum representing the different statuses of a stream. /// @custom:value PENDING Stream created but not started; assets are in a pending state. /// @custom:value STREAMING Active stream where assets are currently being streamed. /// @custom:value SETTLED All assets have been streamed; recipient is due to withdraw them. /// @custom:value CANCELED Canceled stream; remaining assets await recipient's withdrawal. /// @custom:value DEPLETED Depleted stream; all assets have been withdrawn and/or refunded. enum Status { PENDING, // value 0 STREAMING, // value 1 SETTLED, // value 2 CANCELED, // value 3 DEPLETED // value 4 } } /// @notice Namespace for the structs used in {SablierV2LockupDynamic}. library LockupDynamic { /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithDeltas} function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Indicates if the stream is cancelable. /// @param transferable Indicates if the stream NFT is transferable. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. /// @param segments Segments with deltas used to compose the custom streaming curve. Milestones are calculated by /// starting from `block.timestamp` and adding each delta to the previous milestone. struct CreateWithDeltas { address sender; bool cancelable; bool transferable; address recipient; uint128 totalAmount; IERC20 asset; Broker broker; SegmentWithDelta[] segments; } /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithMilestones} /// function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param startTime The Unix timestamp indicating the stream's start. /// @param cancelable Indicates if the stream is cancelable. /// @param transferable Indicates if the stream NFT is transferable. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. /// @param segments Segments used to compose the custom streaming curve. struct CreateWithMilestones { address sender; uint40 startTime; bool cancelable; bool transferable; address recipient; uint128 totalAmount; IERC20 asset; Broker broker; Segment[] segments; } /// @notice Struct encapsulating the time range. /// @param start The Unix timestamp indicating the stream's start. /// @param end The Unix timestamp indicating the stream's end. struct Range { uint40 start; uint40 end; } /// @notice Segment struct used in the Lockup Dynamic stream. /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals. /// @param exponent The exponent of this segment, denoted as a fixed-point number. /// @param milestone The Unix timestamp indicating this segment's end. struct Segment { // slot 0 uint128 amount; UD2x18 exponent; uint40 milestone; } /// @notice Segment struct used at runtime in {SablierV2LockupDynamic.createWithDeltas}. /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals. /// @param exponent The exponent of this segment, denoted as a fixed-point number. /// @param delta The time difference in seconds between this segment and the previous one. struct SegmentWithDelta { uint128 amount; UD2x18 exponent; uint40 delta; } /// @notice Lockup Dynamic stream. /// @dev The fields are arranged like this to save gas via tight variable packing. /// @param sender The address streaming the assets, with the ability to cancel the stream. /// @param startTime The Unix timestamp indicating the stream's start. /// @param endTime The Unix timestamp indicating the stream's end. /// @param isCancelable Boolean indicating if the stream is cancelable. /// @param wasCanceled Boolean indicating if the stream was canceled. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param isDepleted Boolean indicating if the stream is depleted. /// @param isStream Boolean indicating if the struct entity exists. /// @param isTransferable Boolean indicating if the stream NFT is transferable. /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the /// asset's decimals. /// @param segments Segments used to compose the custom streaming curve. struct Stream { // slot 0 address sender; uint40 startTime; uint40 endTime; bool isCancelable; bool wasCanceled; // slot 1 IERC20 asset; bool isDepleted; bool isStream; bool isTransferable; // slot 2 and 3 Lockup.Amounts amounts; // slots [4..n] Segment[] segments; } } /// @notice Namespace for the structs used in {SablierV2LockupLinear}. library LockupLinear { /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithDurations} function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Indicates if the stream is cancelable. /// @param transferable Indicates if the stream NFT is transferable. /// @param durations Struct containing (i) cliff period duration and (ii) total stream duration, both in seconds. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. struct CreateWithDurations { address sender; address recipient; uint128 totalAmount; IERC20 asset; bool cancelable; bool transferable; Durations durations; Broker broker; } /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithRange} function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Indicates if the stream is cancelable. /// @param transferable Indicates if the stream NFT is transferable. /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix /// timestamps. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. struct CreateWithRange { address sender; address recipient; uint128 totalAmount; IERC20 asset; bool cancelable; bool transferable; Range range; Broker broker; } /// @notice Struct encapsulating the cliff duration and the total duration. /// @param cliff The cliff duration in seconds. /// @param total The total duration in seconds. struct Durations { uint40 cliff; uint40 total; } /// @notice Struct encapsulating the time range. /// @param start The Unix timestamp for the stream's start. /// @param cliff The Unix timestamp for the cliff period's end. /// @param end The Unix timestamp for the stream's end. struct Range { uint40 start; uint40 cliff; uint40 end; } /// @notice Lockup Linear stream. /// @dev The fields are arranged like this to save gas via tight variable packing. /// @param sender The address streaming the assets, with the ability to cancel the stream. /// @param startTime The Unix timestamp indicating the stream's start. /// @param cliffTime The Unix timestamp indicating the cliff period's end. /// @param isCancelable Boolean indicating if the stream is cancelable. /// @param wasCanceled Boolean indicating if the stream was canceled. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param endTime The Unix timestamp indicating the stream's end. /// @param isDepleted Boolean indicating if the stream is depleted. /// @param isStream Boolean indicating if the struct entity exists. /// @param isTransferable Boolean indicating if the stream NFT is transferable. /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the /// asset's decimals. struct Stream { // slot 0 address sender; uint40 startTime; uint40 cliffTime; bool isCancelable; bool wasCanceled; // slot 1 IERC20 asset; uint40 endTime; bool isDepleted; bool isStream; bool isTransferable; // slot 2 and 3 Lockup.Amounts amounts; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ISablierV2LockupDynamic } from "@sablier/v2-core/src/interfaces/ISablierV2LockupDynamic.sol"; import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol"; import { Batch } from "../types/DataTypes.sol"; /// @title ISablierV2Batch /// @notice Helper to batch create Sablier V2 Lockup streams. interface ISablierV2Batch { /*////////////////////////////////////////////////////////////////////////// SABLIER-V2-LOCKUP-LINEAR //////////////////////////////////////////////////////////////////////////*/ /// @notice Creates a batch of Lockup Linear streams using `createWithDurations`. /// /// @dev Requirements: /// - There must be at least one element in `batch`. /// - All requirements from {ISablierV2LockupLinear.createWithDurations} must be met for each stream. /// /// @param lockupLinear The address of the {SablierV2LockupLinear} contract. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param batch An array of structs, each encapsulating a subset of the parameters of /// {SablierV2LockupLinear.createWithDurations}. /// @return streamIds The ids of the newly created streams. function createWithDurations( ISablierV2LockupLinear lockupLinear, IERC20 asset, Batch.CreateWithDurations[] calldata batch ) external returns (uint256[] memory streamIds); /// @notice Creates a batch of Lockup Linear streams using `createWithRange`. /// /// @dev Requirements: /// - There must be at least one element in `batch`. /// - All requirements from {ISablierV2LockupLinear.createWithRange} must be met for each stream. /// /// @param lockupLinear The address of the {SablierV2LockupLinear} contract. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param batch An array of structs, each encapsulating a subset of the parameters of /// {SablierV2LockupLinear.createWithRange}. /// @return streamIds The ids of the newly created streams. function createWithRange( ISablierV2LockupLinear lockupLinear, IERC20 asset, Batch.CreateWithRange[] calldata batch ) external returns (uint256[] memory streamIds); /*////////////////////////////////////////////////////////////////////////// SABLIER-V2-LOCKUP-DYNAMIC //////////////////////////////////////////////////////////////////////////*/ /// @notice Creates a batch of Lockup Dynamic streams using `createWithDeltas`. /// /// @dev Requirements: /// - There must be at least one element in `batch`. /// - All requirements from {ISablierV2LockupDynamic.createWithDeltas} must be met for each stream. /// /// @param lockupDynamic The address of the {SablierV2LockupDynamic} contract. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param batch An array of structs, each encapsulating a subset of the parameters of /// {SablierV2LockupDynamic.createWithDeltas}. /// @return streamIds The ids of the newly created streams. function createWithDeltas( ISablierV2LockupDynamic lockupDynamic, IERC20 asset, Batch.CreateWithDeltas[] calldata batch ) external returns (uint256[] memory streamIds); /// @notice Creates a batch of Lockup Dynamic streams using `createWithMilestones`. /// /// @dev Requirements: /// - There must be at least one element in `batch`. /// - All requirements from {ISablierV2LockupDynamic.createWithMilestones} must be met for each stream. /// /// @param lockupDynamic The address of the {SablierV2LockupDynamic} contract. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param batch An array of structs, each encapsulating a subset of the parameters of /// {SablierV2LockupDynamic.createWithMilestones}. /// @return streamIds The ids of the newly created streams. function createWithMilestones( ISablierV2LockupDynamic lockupDynamic, IERC20 asset, Batch.CreateWithMilestones[] calldata batch ) external returns (uint256[] memory streamIds); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; /// @title Errors /// @notice Library containing all custom errors the protocol may revert with. library Errors { /*////////////////////////////////////////////////////////////////////////// SABLIER-V2-BATCH //////////////////////////////////////////////////////////////////////////*/ error SablierV2Batch_BatchSizeZero(); /*////////////////////////////////////////////////////////////////////////// SABLIER-V2-MERKLE-STREAMER //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when trying to claim after the campaign has expired. error SablierV2MerkleStreamer_CampaignExpired(uint256 currentTime, uint40 expiration); /// @notice Thrown when trying to clawback when the campaign has not expired. error SablierV2MerkleStreamer_CampaignNotExpired(uint256 currentTime, uint40 expiration); /// @notice Thrown when trying to claim with an invalid Merkle proof. error SablierV2MerkleStreamer_InvalidProof(); /// @notice Thrown when trying to claim when the protocol fee is not zero. error SablierV2MerkleStreamer_ProtocolFeeNotZero(); /// @notice Thrown when trying to claim the same stream more than once. error SablierV2MerkleStreamer_StreamClaimed(uint256 index); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { ISablierV2Lockup } from "@sablier/v2-core/src/interfaces/ISablierV2Lockup.sol"; import { Broker, LockupDynamic, LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol"; library Batch { /// @notice A struct encapsulating the lockup contract's address and the stream ids to cancel. struct CancelMultiple { ISablierV2Lockup lockup; uint256[] streamIds; } /// @notice A struct encapsulating all parameters of {SablierV2LockupDynamic.createWithDelta} except for the asset. struct CreateWithDeltas { address sender; bool cancelable; bool transferable; address recipient; uint128 totalAmount; Broker broker; LockupDynamic.SegmentWithDelta[] segments; } /// @notice A struct encapsulating all parameters of {SablierV2LockupLinear.createWithDurations} except for the /// asset. struct CreateWithDurations { address sender; address recipient; uint128 totalAmount; bool cancelable; bool transferable; LockupLinear.Durations durations; Broker broker; } /// @notice A struct encapsulating all parameters of {SablierV2LockupDynamic.createWithMilestones} except for the /// asset. struct CreateWithMilestones { address sender; uint40 startTime; bool cancelable; bool transferable; address recipient; uint128 totalAmount; Broker broker; LockupDynamic.Segment[] segments; } /// @notice A struct encapsulating all parameters of {SablierV2LockupLinear.createWithRange} except for the asset. struct CreateWithRange { address sender; address recipient; uint128 totalAmount; bool cancelable; bool transferable; LockupLinear.Range range; Broker broker; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol"; import { Lockup } from "../types/DataTypes.sol"; import { ISablierV2Base } from "./ISablierV2Base.sol"; import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol"; /// @title ISablierV2Lockup /// @notice Common logic between all Sablier V2 Lockup streaming contracts. interface ISablierV2Lockup is ISablierV2Base, // 1 inherited component IERC721Metadata // 2 inherited components { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when a stream is canceled. /// @param streamId The id of the stream. /// @param sender The address of the stream's sender. /// @param recipient The address of the stream's recipient. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's /// decimals. /// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the /// asset's decimals. event CancelLockupStream( uint256 streamId, address indexed sender, address indexed recipient, IERC20 indexed asset, uint128 senderAmount, uint128 recipientAmount ); /// @notice Emitted when a sender gives up the right to cancel a stream. /// @param streamId The id of the stream. event RenounceLockupStream(uint256 indexed streamId); /// @notice Emitted when the admin sets a new NFT descriptor contract. /// @param admin The address of the current contract admin. /// @param oldNFTDescriptor The address of the old NFT descriptor contract. /// @param newNFTDescriptor The address of the new NFT descriptor contract. event SetNFTDescriptor( address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor ); /// @notice Emitted when assets are withdrawn from a stream. /// @param streamId The id of the stream. /// @param to The address that has received the withdrawn assets. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals. event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, IERC20 indexed asset, uint128 amount); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the address of the ERC-20 asset used for streaming. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getAsset(uint256 streamId) external view returns (IERC20 asset); /// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount); /// @notice Retrieves the stream's end time, which is a Unix timestamp. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getEndTime(uint256 streamId) external view returns (uint40 endTime); /// @notice Retrieves the stream's recipient. /// @dev Reverts if the NFT has been burned. /// @param streamId The stream id for the query. function getRecipient(uint256 streamId) external view returns (address recipient); /// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's /// decimals. This amount is always zero unless the stream was canceled. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount); /// @notice Retrieves the stream's sender. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getSender(uint256 streamId) external view returns (address sender); /// @notice Retrieves the stream's start time, which is a Unix timestamp. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getStartTime(uint256 streamId) external view returns (uint40 startTime); /// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount); /// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this /// flag is always `false`. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isCancelable(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isCold(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream is depleted. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isDepleted(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream exists. /// @dev Does not revert if `streamId` references a null stream. /// @param streamId The stream id for the query. function isStream(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream NFT can be transferred. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isTransferable(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isWarm(uint256 streamId) external view returns (bool result); /// @notice Counter for stream ids, used in the create functions. function nextStreamId() external view returns (uint256); /// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units /// of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount); /// @notice Retrieves the stream's status. /// @param streamId The stream id for the query. function statusOf(uint256 streamId) external view returns (Lockup.Status status); /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount); /// @notice Retrieves a flag indicating whether the stream was canceled. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function wasCanceled(uint256 streamId) external view returns (bool result); /// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's /// decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Burns the NFT associated with the stream. /// /// @dev Emits a {Transfer} event. /// /// Requirements: /// - Must not be delegate called. /// - `streamId` must reference a depleted stream. /// - The NFT must exist. /// - `msg.sender` must be either the NFT owner or an approved third party. /// /// @param streamId The id of the stream NFT to burn. function burn(uint256 streamId) external; /// @notice Cancels the stream and refunds any remaining assets to the sender. /// /// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event. /// /// Notes: /// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the /// stream is marked as depleted. /// - This function attempts to invoke a hook on the recipient, if the resolved address is a contract. /// /// Requirements: /// - Must not be delegate called. /// - The stream must be warm and cancelable. /// - `msg.sender` must be the stream's sender. /// /// @param streamId The id of the stream to cancel. function cancel(uint256 streamId) external; /// @notice Cancels multiple streams and refunds any remaining assets to the sender. /// /// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events. /// /// Notes: /// - Refer to the notes in {cancel}. /// /// Requirements: /// - All requirements from {cancel} must be met for each stream. /// /// @param streamIds The ids of the streams to cancel. function cancelMultiple(uint256[] calldata streamIds) external; /// @notice Removes the right of the stream's sender to cancel the stream. /// /// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event. /// /// Notes: /// - This is an irreversible operation. /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract. /// /// Requirements: /// - Must not be delegate called. /// - `streamId` must reference a warm stream. /// - `msg.sender` must be the stream's sender. /// - The stream must be cancelable. /// /// @param streamId The id of the stream to renounce. function renounce(uint256 streamId) external; /// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs. /// /// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event. /// /// Notes: /// - Does not revert if the NFT descriptor is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newNFTDescriptor The address of the new NFT descriptor contract. function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external; /// @notice Withdraws the provided amount of assets from the stream to the `to` address. /// /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event. /// /// Notes: /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract /// and `msg.sender` is either the sender or an approved operator. /// /// Requirements: /// - Must not be delegate called. /// - `streamId` must not reference a null or depleted stream. /// - `msg.sender` must be the stream's sender, the stream's recipient or an approved third party. /// - `to` must be the recipient if `msg.sender` is the stream's sender. /// - `to` must not be the zero address. /// - `amount` must be greater than zero and must not exceed the withdrawable amount. /// /// @param streamId The id of the stream to withdraw from. /// @param to The address receiving the withdrawn assets. /// @param amount The amount to withdraw, denoted in units of the asset's decimals. function withdraw(uint256 streamId, address to, uint128 amount) external; /// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`. /// /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event. /// /// Notes: /// - Refer to the notes in {withdraw}. /// /// Requirements: /// - Refer to the requirements in {withdraw}. /// /// @param streamId The id of the stream to withdraw from. /// @param to The address receiving the withdrawn assets. function withdrawMax(uint256 streamId, address to) external; /// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the /// NFT to `newRecipient`. /// /// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event. /// /// Notes: /// - If the withdrawable amount is zero, the withdrawal is skipped. /// - Refer to the notes in {withdraw}. /// /// Requirements: /// - `msg.sender` must be the stream's recipient. /// - Refer to the requirements in {withdraw}. /// - Refer to the requirements in {IERC721.transferFrom}. /// /// @param streamId The id of the stream NFT to transfer. /// @param newRecipient The address of the new owner of the stream NFT. function withdrawMaxAndTransfer(uint256 streamId, address newRecipient) external; /// @notice Withdraws assets from streams to the provided address `to`. /// /// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events. /// /// Notes: /// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient. /// /// Requirements: /// - All requirements from {withdraw} must be met for each stream. /// - There must be an equal number of `streamIds` and `amounts`. /// /// @param streamIds The ids of the streams to withdraw from. /// @param to The address receiving the withdrawn assets. /// @param amounts The amounts to withdraw, denoted in units of the asset's decimals. function withdrawMultiple(uint256[] calldata streamIds, address to, uint128[] calldata amounts) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══╝ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud2x18/Casting.sol"; import "./ud2x18/Constants.sol"; import "./ud2x18/Errors.sol"; import "./ud2x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; import { IAdminable } from "./IAdminable.sol"; import { ISablierV2Comptroller } from "./ISablierV2Comptroller.sol"; /// @title ISablierV2Base /// @notice Base logic for all Sablier V2 streaming contracts. interface ISablierV2Base is IAdminable { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the admin claims all protocol revenues accrued for a particular ERC-20 asset. /// @param admin The address of the contract admin. /// @param asset The contract address of the ERC-20 asset the protocol revenues have been claimed for. /// @param protocolRevenues The amount of protocol revenues claimed, denoted in units of the asset's decimals. event ClaimProtocolRevenues(address indexed admin, IERC20 indexed asset, uint128 protocolRevenues); /// @notice Emitted when the admin sets a new comptroller contract. /// @param admin The address of the contract admin. /// @param oldComptroller The address of the old comptroller contract. /// @param newComptroller The address of the new comptroller contract. event SetComptroller( address indexed admin, ISablierV2Comptroller oldComptroller, ISablierV2Comptroller newComptroller ); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the maximum fee that can be charged by the protocol or a broker, denoted as a fixed-point /// number where 1e18 is 100%. /// @dev This value is hard coded as a constant. function MAX_FEE() external view returns (UD60x18); /// @notice Retrieves the address of the comptroller contract, responsible for the Sablier V2 protocol /// configuration. function comptroller() external view returns (ISablierV2Comptroller); /// @notice Retrieves the protocol revenues accrued for the provided ERC-20 asset, in units of the asset's /// decimals. /// @param asset The contract address of the ERC-20 asset to query. function protocolRevenues(IERC20 asset) external view returns (uint128 revenues); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Claims all accumulated protocol revenues for the provided ERC-20 asset. /// /// @dev Emits a {ClaimProtocolRevenues} event. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param asset The contract address of the ERC-20 asset for which to claim protocol revenues. function claimProtocolRevenues(IERC20 asset) external; /// @notice Assigns a new comptroller contract responsible for the protocol configuration. /// /// @dev Emits a {SetComptroller} event. /// /// Notes: /// - Does not revert if the comptroller is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newComptroller The address of the new comptroller contract. function setComptroller(ISablierV2Comptroller newComptroller) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol"; /// @title ISablierV2NFTDescriptor /// @notice This contract generates the URI describing the Sablier V2 stream NFTs. /// @dev Inspired by Uniswap V3 Positions NFTs. interface ISablierV2NFTDescriptor { /// @notice Produces the URI describing a particular stream NFT. /// @dev This is a data URI with the JSON contents directly inlined. /// @param sablier The address of the Sablier contract the stream was created in. /// @param streamId The id of the stream for which to produce a description. /// @return uri The URI of the ERC721-compliant metadata. function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; /// @title IAdminable /// @notice Contract module that provides a basic access control mechanism, with an admin that can be /// granted exclusive access to specific functions. The inheriting contract must set the initial admin /// in the constructor. interface IAdminable { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the admin is transferred. /// @param oldAdmin The address of the old admin. /// @param newAdmin The address of the new admin. event TransferAdmin(address indexed oldAdmin, address indexed newAdmin); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice The address of the admin account or contract. function admin() external view returns (address); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Transfers the contract admin to a new address. /// /// @dev Notes: /// - Does not revert if the admin is the same. /// - This function can potentially leave the contract without an admin, thereby removing any /// functionality that is only available to the admin. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newAdmin The address of the new admin. function transferAdmin(address newAdmin) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; import { IAdminable } from "./IAdminable.sol"; /// @title ISablierV2Controller /// @notice This contract is in charge of the Sablier V2 protocol configuration, handling such values as the /// protocol fees. interface ISablierV2Comptroller is IAdminable { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the admin sets a new flash fee. /// @param admin The address of the contract admin. /// @param oldFlashFee The old flash fee, denoted as a fixed-point number. /// @param newFlashFee The new flash fee, denoted as a fixed-point number. event SetFlashFee(address indexed admin, UD60x18 oldFlashFee, UD60x18 newFlashFee); /// @notice Emitted when the admin sets a new protocol fee for the provided ERC-20 asset. /// @param admin The address of the contract admin. /// @param asset The contract address of the ERC-20 asset the new protocol fee has been set for. /// @param oldProtocolFee The old protocol fee, denoted as a fixed-point number. /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number. event SetProtocolFee(address indexed admin, IERC20 indexed asset, UD60x18 oldProtocolFee, UD60x18 newProtocolFee); /// @notice Emitted when the admin enables or disables an ERC-20 asset for flash loaning. /// @param admin The address of the contract admin. /// @param asset The contract address of the ERC-20 asset to toggle. /// @param newFlag Whether the ERC-20 asset can be flash loaned. event ToggleFlashAsset(address indexed admin, IERC20 indexed asset, bool newFlag); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the global flash fee, denoted as a fixed-point number where 1e18 is 100%. /// /// @dev Notes: /// - This fee represents a percentage, not an amount. Do not confuse it with {IERC3156FlashLender.flashFee}, /// which calculates the fee amount for a specified flash loan amount. /// - Unlike the protocol fee, this is a global fee applied to all flash loans, not a per-asset fee. function flashFee() external view returns (UD60x18 fee); /// @notice Retrieves a flag indicating whether the provided ERC-20 asset can be flash loaned. /// @param token The contract address of the ERC-20 asset to check. function isFlashAsset(IERC20 token) external view returns (bool result); /// @notice Retrieves the protocol fee for all streams created with the provided ERC-20 asset. /// @param asset The contract address of the ERC-20 asset to query. /// @return fee The protocol fee denoted as a fixed-point number where 1e18 is 100%. function protocolFees(IERC20 asset) external view returns (UD60x18 fee); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Updates the flash fee charged on all flash loans made with any ERC-20 asset. /// /// @dev Emits a {SetFlashFee} event. /// /// Notes: /// - Does not revert if the fee is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newFlashFee The new flash fee to set, denoted as a fixed-point number where 1e18 is 100%. function setFlashFee(UD60x18 newFlashFee) external; /// @notice Sets a new protocol fee that will be charged on all streams created with the provided ERC-20 asset. /// /// @dev Emits a {SetProtocolFee} event. /// /// Notes: /// - The fee is not denoted in units of the asset's decimals; it is a fixed-point number. Refer to the /// PRBMath documentation for more detail on the logic of UD60x18. /// - Does not revert if the fee is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param asset The contract address of the ERC-20 asset to update the fee for. /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number where 1e18 is 100%. function setProtocolFee(IERC20 asset, UD60x18 newProtocolFee) external; /// @notice Toggles the flash loanability of an ERC-20 asset. /// /// @dev Emits a {ToggleFlashAsset} event. /// /// Requirements: /// - `msg.sender` must be the admin. /// /// @param asset The address of the ERC-20 asset to toggle. function toggleFlashAsset(IERC20 asset) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
{ "remappings": [ "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@prb/math/=node_modules/@prb/math/", "@prb/test/=node_modules/@prb/test/", "@sablier/v2-core/=node_modules/@sablier/v2-core/", "forge-std/=node_modules/forge-std/", "solady/=node_modules/solady/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
[{"inputs":[],"name":"SablierV2Batch_BatchSizeZero","type":"error"},{"inputs":[{"internalType":"contract ISablierV2LockupDynamic","name":"lockupDynamic","type":"address"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"transferable","type":"bool"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"totalAmount","type":"uint128"},{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"UD60x18","name":"fee","type":"uint256"}],"internalType":"struct Broker","name":"broker","type":"tuple"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"delta","type":"uint40"}],"internalType":"struct LockupDynamic.SegmentWithDelta[]","name":"segments","type":"tuple[]"}],"internalType":"struct Batch.CreateWithDeltas[]","name":"batch","type":"tuple[]"}],"name":"createWithDeltas","outputs":[{"internalType":"uint256[]","name":"streamIds","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISablierV2LockupLinear","name":"lockupLinear","type":"address"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"totalAmount","type":"uint128"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"transferable","type":"bool"},{"components":[{"internalType":"uint40","name":"cliff","type":"uint40"},{"internalType":"uint40","name":"total","type":"uint40"}],"internalType":"struct LockupLinear.Durations","name":"durations","type":"tuple"},{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"UD60x18","name":"fee","type":"uint256"}],"internalType":"struct Broker","name":"broker","type":"tuple"}],"internalType":"struct Batch.CreateWithDurations[]","name":"batch","type":"tuple[]"}],"name":"createWithDurations","outputs":[{"internalType":"uint256[]","name":"streamIds","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISablierV2LockupDynamic","name":"lockupDynamic","type":"address"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"transferable","type":"bool"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"totalAmount","type":"uint128"},{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"UD60x18","name":"fee","type":"uint256"}],"internalType":"struct Broker","name":"broker","type":"tuple"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"milestone","type":"uint40"}],"internalType":"struct LockupDynamic.Segment[]","name":"segments","type":"tuple[]"}],"internalType":"struct Batch.CreateWithMilestones[]","name":"batch","type":"tuple[]"}],"name":"createWithMilestones","outputs":[{"internalType":"uint256[]","name":"streamIds","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISablierV2LockupLinear","name":"lockupLinear","type":"address"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"totalAmount","type":"uint128"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"transferable","type":"bool"},{"components":[{"internalType":"uint40","name":"start","type":"uint40"},{"internalType":"uint40","name":"cliff","type":"uint40"},{"internalType":"uint40","name":"end","type":"uint40"}],"internalType":"struct LockupLinear.Range","name":"range","type":"tuple"},{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"UD60x18","name":"fee","type":"uint256"}],"internalType":"struct Broker","name":"broker","type":"tuple"}],"internalType":"struct Batch.CreateWithRange[]","name":"batch","type":"tuple[]"}],"name":"createWithRange","outputs":[{"internalType":"uint256[]","name":"streamIds","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080806040523461001657611a4a908161001c8239f35b600080fdfe608080604052600436101561001357600080fd5b60003560e01c9081638c72706e14610c7d575080639b38b39a14610864578063bd4eb1a4146104ac5763e8d349611461004b57600080fd5b346104345760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610434576100826111c1565b61008a6110c7565b9060443567ffffffffffffffff808211610434573660238301121561043457816004013511610434573660246101208360040135028301011161043457806004013515610482576000805b8260040135821061044d5761010291508473ffffffffffffffffffffffffffffffffffffffff851661158b565b61010f816004013561133a565b9160005b82600401358110610130576040518061012c8682611185565b0390f35b8060e06101458286600401356024880161157a565b01610163606061015d84886004013560248a0161157a565b01611389565b906101768387600401356024890161157a565b91610194602061018e868a6004013560248c0161157a565b01611396565b6101ae6101a9868a6004013560248c0161157a565b611396565b916fffffffffffffffffffffffffffffffff6101dd60406101d78960048e013560248f0161157a565b01611253565b73ffffffffffffffffffffffffffffffffffffffff61020c8c61015d60809c8260248f9460040135910161157a565b94816040519761021b89611270565b16875216602086015216604084015273ffffffffffffffffffffffffffffffffffffffff8b166060840152151586830152151560a082015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608436030112610434576103c4926102c060e093604051610295816112a9565b6102a160a08501611451565b81526102b060c0809501611451565b602082015283850152369061140b565b83830152604051957fab167ccc00000000000000000000000000000000000000000000000000000000875273ffffffffffffffffffffffffffffffffffffffff835116600488015273ffffffffffffffffffffffffffffffffffffffff60208401511660248801526fffffffffffffffffffffffffffffffff604084015116604488015273ffffffffffffffffffffffffffffffffffffffff60608401511660648801528201511515608487015260a0820151151560a4870152810151602064ffffffffff918281511660c489015201511660e486015201516101048401906020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b60208261014481600073ffffffffffffffffffffffffffffffffffffffff88165af1801561044157600090610409575b600192506104028287611515565b5201610113565b506020823d602011610439575b81610423602093836112e1565b8101031261043457600191516103f4565b600080fd5b3d9150610416565b6040513d6000823e3d90fd5b6001906fffffffffffffffffffffffffffffffff61047860406101d786886004013560248a0161157a565b16019101906100d5565b60046040517f763e559d000000000000000000000000000000000000000000000000000000008152fd5b34610434576104ba366110ea565b909281156104825760009060005b838110610836575073ffffffffffffffffffffffffffffffffffffffff6104f2911691848361158b565b6104fb8261133a565b9260005b838110610514576040518061012c8782611185565b61051f81858861153a565b60a00190868561053083828461153a565b60200161053c90611389565b938161054985828661153a565b60600161055590611396565b8561056181848861153a565b60e0810161056e916113b7565b9561057a92919761153a565b61058390611396565b968c8761059181868461153a565b60800161059d90611253565b946105a79261153a565b6040016105b390611389565b90604051986105c18a611270565b73ffffffffffffffffffffffffffffffffffffffff168952151560208901521515604088015273ffffffffffffffffffffffffffffffffffffffff1660608701526fffffffffffffffffffffffffffffffff16608086015273ffffffffffffffffffffffffffffffffffffffff861660a08601523661063f9161140b565b60c0850152369061064f92611463565b60e083015260405180927f168444560000000000000000000000000000000000000000000000000000000082526004820160209052610144820190805173ffffffffffffffffffffffffffffffffffffffff166024840152602081015115156044840152604081015115156064840152606081015173ffffffffffffffffffffffffffffffffffffffff16608484015260808101516fffffffffffffffffffffffffffffffff1660a484015260a081015173ffffffffffffffffffffffffffffffffffffffff1660c484015260c081015160e4840161074d916020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b60e0015190610124830161012090528151809152610164830191602001906000905b8082106107db57505050908060209203816000885af18015610441576000906107a8575b600192506107a18288611515565b52016104ff565b506020823d6020116107d3575b816107c2602093836112e1565b810103126104345760019151610793565b3d91506107b5565b919350916020606082610828600194885164ffffffffff604080926fffffffffffffffffffffffffffffffff815116855267ffffffffffffffff6020820151166020860152015116910152565b01940192018593929161076f565b916001906fffffffffffffffffffffffffffffffff61085b60806101d787898c61153a565b160192016104c8565b346104345760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104345761089b6111c1565b6108a36110c7565b6044359167ffffffffffffffff8084116104345736602385011215610434578360040135116104345760248301903660246101408660040135028601011161043457836004013515610482576000805b85600401358210610c4b5761092091508473ffffffffffffffffffffffffffffffffffffffff841661158b565b61092d846004013561133a565b9260005b8560040135811061094a576040518061012c8782611185565b808661010061095f8794836004013586611529565b0183610975606061015d86866004013585611529565b610998602061018e8761098d81896004013588611529565b976004013586611529565b906fffffffffffffffffffffffffffffffff8c73ffffffffffffffffffffffffffffffffffffffff6109fe6109ea60406101d78c6109de6101a98260048a01358e611529565b9a876004013590611529565b9261015d8b60809d8e936004013590611529565b948160405197610a0d89611270565b16875216602086015216604084015273ffffffffffffffffffffffffffffffffffffffff88166060840152151586830152151560a082015260607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60843603011261043457610bd392610ac260e093604051610a878161128d565b610a9360a08501611451565b8152610ab28660c095610aa7878201611451565b602085015201611451565b604082015283850152369061140b565b83830152604051957f96ce143100000000000000000000000000000000000000000000000000000000875273ffffffffffffffffffffffffffffffffffffffff835116600488015273ffffffffffffffffffffffffffffffffffffffff60208401511660248801526fffffffffffffffffffffffffffffffff604084015116604488015273ffffffffffffffffffffffffffffffffffffffff60608401511660648801528201511515608487015260a0820151151560a4870152810151604064ffffffffff918281511660c48901528260208201511660e489015201511661010486015201516101248401906020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b60208261016481600073ffffffffffffffffffffffffffffffffffffffff89165af1801561044157600090610c18575b60019250610c118288611515565b5201610931565b506020823d602011610c43575b81610c32602093836112e1565b810103126104345760019151610c03565b3d9150610c25565b6001906fffffffffffffffffffffffffffffffff610c7360406101d7868b600401358a611529565b16019101906108f3565b3461043457610c8b366110ea565b929093831561109f57506000805b84821061107157610cc291508373ffffffffffffffffffffffffffffffffffffffff841661158b565b610ccb8361133a565b9360005b848110610ce4576040518061012c8882611185565b60c0610cf18287856111e4565b0190610d03604061015d8389876111e4565b91610d14608061018e848a886111e4565b92610d2e610d23848a886111e4565b6101008101906113b7565b9091610d3e6101a9868c8a6111e4565b936020610d4c878d8b6111e4565b01359464ffffffffff861686036104345788610d7f606061015d8f80610d7960a06101d78f80958a6111e4565b956111e4565b96604051998a61012081011067ffffffffffffffff6101208d0111176110425773ffffffffffffffffffffffffffffffffffffffff908b99610e3a99989764ffffffffff6fffffffffffffffffffffffffffffffff96956101009f86610e2e9b9a61012083016040521690521660208d0152151560408c0152151560608b01521660808901521660a087015273ffffffffffffffffffffffffffffffffffffffff8b1660c0870152369061140b565b60e08501523691611463565b838201526040519283917fc33cd35e0000000000000000000000000000000000000000000000000000000083526020600484015273ffffffffffffffffffffffffffffffffffffffff815116602484015264ffffffffff602082015116604484015260408101511515606484015260608101511515608484015273ffffffffffffffffffffffffffffffffffffffff60808201511660a48401526fffffffffffffffffffffffffffffffff60a08201511660c484015273ffffffffffffffffffffffffffffffffffffffff60c08201511660e4840152610f4360e08201516101048501906020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b0151610140610144830152805180610164840152602061018484019201906000905b808210610fe75750505090806020920381600073ffffffffffffffffffffffffffffffffffffffff89165af1801561044157600090610fb4575b60019250610fad8289611515565b5201610ccf565b506020823d602011610fdf575b81610fce602093836112e1565b810103126104345760019151610f9f565b3d9150610fc1565b919350916020606082611034600194885164ffffffffff604080926fffffffffffffffffffffffffffffffff815116855267ffffffffffffffff6020820151166020860152015116910152565b019401920185939291610f65565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6001906fffffffffffffffffffffffffffffffff61109560a06101d7868a8c6111e4565b1601910190610c99565b807f763e559d0000000000000000000000000000000000000000000000000000000060049252fd5b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361043457565b9060607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126104345773ffffffffffffffffffffffffffffffffffffffff91600435838116810361043457926024359081168103610434579160443567ffffffffffffffff9283821161043457806023830112156104345781600401359384116104345760248460051b83010111610434576024019190565b602090602060408183019282815285518094520193019160005b8281106111ad575050505090565b83518552938101939281019260010161119f565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361043457565b91908110156112245760051b810135907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee181360301821215610434570190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b356fffffffffffffffffffffffffffffffff811681036104345790565b610100810190811067ffffffffffffffff82111761104257604052565b6060810190811067ffffffffffffffff82111761104257604052565b6040810190811067ffffffffffffffff82111761104257604052565b6080810190811067ffffffffffffffff82111761104257604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761104257604052565b67ffffffffffffffff81116110425760051b60200190565b9061134482611322565b61135160405191826112e1565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe061137f8294611322565b0190602036910137565b3580151581036104345790565b3573ffffffffffffffffffffffffffffffffffffffff811681036104345790565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe181360301821215610434570180359067ffffffffffffffff82116104345760200191606082023603831361043457565b919082604091031261043457604051611423816112a9565b8092803573ffffffffffffffffffffffffffffffffffffffff81168103610434578252602090810135910152565b359064ffffffffff8216820361043457565b92919261146f82611322565b60409461147f60405192836112e1565b8195848352602080930191606080960285019481861161043457925b8584106114ab5750505050505050565b8684830312610434578251906114c08261128d565b84356fffffffffffffffffffffffffffffffff81168103610434578252858501359067ffffffffffffffff8216820361043457828792838b950152611506868801611451565b8682015281520193019261149b565b80518210156112245760209160051b010190565b919081101561122457610140020190565b91908110156112245760051b810135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0181360301821215610434570190565b919081101561122457610120020190565b90604080516020907f23b872dd000000000000000000000000000000000000000000000000000000008282015233602482015260449030828201528660648201526064815260a081019080821067ffffffffffffffff831117611042576115f49185528561179d565b73ffffffffffffffffffffffffffffffffffffffff94858516958451917fdd62ed3e0000000000000000000000000000000000000000000000000000000083523060048401521690816024820152838184818a5afa90811561177a57908891600091611749575b501061166b575b50505050505050565b8351956000808589017f095ea7b3000000000000000000000000000000000000000000000000000000009a8b82528560248c0152868b0152858a526116af8a6112c5565b89519082855af1906116bf6118bd565b82611716575b508161170b575b50611662576116ff966116fa945193840152602483015260008183015281526116f4816112c5565b8261179d565b61179d565b38808080808080611662565b90503b1515386116cc565b809192505190858215928315611731575b50505090386116c5565b6117419350820181019101611785565b388581611727565b809250858092503d8311611773575b61176281836112e1565b81010312610434578790513861165b565b503d611758565b85513d6000823e3d90fd5b90816020910312610434575180151581036104345790565b6040516118089173ffffffffffffffffffffffffffffffffffffffff166117c3826112a9565b6000806020958685527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656487860152868151910182855af16118026118bd565b9161191b565b8051908282159283156118a5575b505050156118215750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b6118b59350820181019101611785565b388281611816565b3d15611916573d9067ffffffffffffffff8211611042576040519161190a60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601846112e1565b82523d6000602084013e565b606090565b91929015611996575081511561192f575090565b3b156119385790565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b8251909150156119a95750805190602001fd5b604051907f08c379a000000000000000000000000000000000000000000000000000000000825281602080600483015282519283602484015260005b848110611a26575050507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f836000604480968601015201168101030190fd5b8181018301518682016044015285935082016119e556fea164736f6c6343000817000a
Deployed Bytecode
0x608080604052600436101561001357600080fd5b60003560e01c9081638c72706e14610c7d575080639b38b39a14610864578063bd4eb1a4146104ac5763e8d349611461004b57600080fd5b346104345760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610434576100826111c1565b61008a6110c7565b9060443567ffffffffffffffff808211610434573660238301121561043457816004013511610434573660246101208360040135028301011161043457806004013515610482576000805b8260040135821061044d5761010291508473ffffffffffffffffffffffffffffffffffffffff851661158b565b61010f816004013561133a565b9160005b82600401358110610130576040518061012c8682611185565b0390f35b8060e06101458286600401356024880161157a565b01610163606061015d84886004013560248a0161157a565b01611389565b906101768387600401356024890161157a565b91610194602061018e868a6004013560248c0161157a565b01611396565b6101ae6101a9868a6004013560248c0161157a565b611396565b916fffffffffffffffffffffffffffffffff6101dd60406101d78960048e013560248f0161157a565b01611253565b73ffffffffffffffffffffffffffffffffffffffff61020c8c61015d60809c8260248f9460040135910161157a565b94816040519761021b89611270565b16875216602086015216604084015273ffffffffffffffffffffffffffffffffffffffff8b166060840152151586830152151560a082015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608436030112610434576103c4926102c060e093604051610295816112a9565b6102a160a08501611451565b81526102b060c0809501611451565b602082015283850152369061140b565b83830152604051957fab167ccc00000000000000000000000000000000000000000000000000000000875273ffffffffffffffffffffffffffffffffffffffff835116600488015273ffffffffffffffffffffffffffffffffffffffff60208401511660248801526fffffffffffffffffffffffffffffffff604084015116604488015273ffffffffffffffffffffffffffffffffffffffff60608401511660648801528201511515608487015260a0820151151560a4870152810151602064ffffffffff918281511660c489015201511660e486015201516101048401906020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b60208261014481600073ffffffffffffffffffffffffffffffffffffffff88165af1801561044157600090610409575b600192506104028287611515565b5201610113565b506020823d602011610439575b81610423602093836112e1565b8101031261043457600191516103f4565b600080fd5b3d9150610416565b6040513d6000823e3d90fd5b6001906fffffffffffffffffffffffffffffffff61047860406101d786886004013560248a0161157a565b16019101906100d5565b60046040517f763e559d000000000000000000000000000000000000000000000000000000008152fd5b34610434576104ba366110ea565b909281156104825760009060005b838110610836575073ffffffffffffffffffffffffffffffffffffffff6104f2911691848361158b565b6104fb8261133a565b9260005b838110610514576040518061012c8782611185565b61051f81858861153a565b60a00190868561053083828461153a565b60200161053c90611389565b938161054985828661153a565b60600161055590611396565b8561056181848861153a565b60e0810161056e916113b7565b9561057a92919761153a565b61058390611396565b968c8761059181868461153a565b60800161059d90611253565b946105a79261153a565b6040016105b390611389565b90604051986105c18a611270565b73ffffffffffffffffffffffffffffffffffffffff168952151560208901521515604088015273ffffffffffffffffffffffffffffffffffffffff1660608701526fffffffffffffffffffffffffffffffff16608086015273ffffffffffffffffffffffffffffffffffffffff861660a08601523661063f9161140b565b60c0850152369061064f92611463565b60e083015260405180927f168444560000000000000000000000000000000000000000000000000000000082526004820160209052610144820190805173ffffffffffffffffffffffffffffffffffffffff166024840152602081015115156044840152604081015115156064840152606081015173ffffffffffffffffffffffffffffffffffffffff16608484015260808101516fffffffffffffffffffffffffffffffff1660a484015260a081015173ffffffffffffffffffffffffffffffffffffffff1660c484015260c081015160e4840161074d916020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b60e0015190610124830161012090528151809152610164830191602001906000905b8082106107db57505050908060209203816000885af18015610441576000906107a8575b600192506107a18288611515565b52016104ff565b506020823d6020116107d3575b816107c2602093836112e1565b810103126104345760019151610793565b3d91506107b5565b919350916020606082610828600194885164ffffffffff604080926fffffffffffffffffffffffffffffffff815116855267ffffffffffffffff6020820151166020860152015116910152565b01940192018593929161076f565b916001906fffffffffffffffffffffffffffffffff61085b60806101d787898c61153a565b160192016104c8565b346104345760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104345761089b6111c1565b6108a36110c7565b6044359167ffffffffffffffff8084116104345736602385011215610434578360040135116104345760248301903660246101408660040135028601011161043457836004013515610482576000805b85600401358210610c4b5761092091508473ffffffffffffffffffffffffffffffffffffffff841661158b565b61092d846004013561133a565b9260005b8560040135811061094a576040518061012c8782611185565b808661010061095f8794836004013586611529565b0183610975606061015d86866004013585611529565b610998602061018e8761098d81896004013588611529565b976004013586611529565b906fffffffffffffffffffffffffffffffff8c73ffffffffffffffffffffffffffffffffffffffff6109fe6109ea60406101d78c6109de6101a98260048a01358e611529565b9a876004013590611529565b9261015d8b60809d8e936004013590611529565b948160405197610a0d89611270565b16875216602086015216604084015273ffffffffffffffffffffffffffffffffffffffff88166060840152151586830152151560a082015260607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60843603011261043457610bd392610ac260e093604051610a878161128d565b610a9360a08501611451565b8152610ab28660c095610aa7878201611451565b602085015201611451565b604082015283850152369061140b565b83830152604051957f96ce143100000000000000000000000000000000000000000000000000000000875273ffffffffffffffffffffffffffffffffffffffff835116600488015273ffffffffffffffffffffffffffffffffffffffff60208401511660248801526fffffffffffffffffffffffffffffffff604084015116604488015273ffffffffffffffffffffffffffffffffffffffff60608401511660648801528201511515608487015260a0820151151560a4870152810151604064ffffffffff918281511660c48901528260208201511660e489015201511661010486015201516101248401906020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b60208261016481600073ffffffffffffffffffffffffffffffffffffffff89165af1801561044157600090610c18575b60019250610c118288611515565b5201610931565b506020823d602011610c43575b81610c32602093836112e1565b810103126104345760019151610c03565b3d9150610c25565b6001906fffffffffffffffffffffffffffffffff610c7360406101d7868b600401358a611529565b16019101906108f3565b3461043457610c8b366110ea565b929093831561109f57506000805b84821061107157610cc291508373ffffffffffffffffffffffffffffffffffffffff841661158b565b610ccb8361133a565b9360005b848110610ce4576040518061012c8882611185565b60c0610cf18287856111e4565b0190610d03604061015d8389876111e4565b91610d14608061018e848a886111e4565b92610d2e610d23848a886111e4565b6101008101906113b7565b9091610d3e6101a9868c8a6111e4565b936020610d4c878d8b6111e4565b01359464ffffffffff861686036104345788610d7f606061015d8f80610d7960a06101d78f80958a6111e4565b956111e4565b96604051998a61012081011067ffffffffffffffff6101208d0111176110425773ffffffffffffffffffffffffffffffffffffffff908b99610e3a99989764ffffffffff6fffffffffffffffffffffffffffffffff96956101009f86610e2e9b9a61012083016040521690521660208d0152151560408c0152151560608b01521660808901521660a087015273ffffffffffffffffffffffffffffffffffffffff8b1660c0870152369061140b565b60e08501523691611463565b838201526040519283917fc33cd35e0000000000000000000000000000000000000000000000000000000083526020600484015273ffffffffffffffffffffffffffffffffffffffff815116602484015264ffffffffff602082015116604484015260408101511515606484015260608101511515608484015273ffffffffffffffffffffffffffffffffffffffff60808201511660a48401526fffffffffffffffffffffffffffffffff60a08201511660c484015273ffffffffffffffffffffffffffffffffffffffff60c08201511660e4840152610f4360e08201516101048501906020809173ffffffffffffffffffffffffffffffffffffffff81511684520151910152565b0151610140610144830152805180610164840152602061018484019201906000905b808210610fe75750505090806020920381600073ffffffffffffffffffffffffffffffffffffffff89165af1801561044157600090610fb4575b60019250610fad8289611515565b5201610ccf565b506020823d602011610fdf575b81610fce602093836112e1565b810103126104345760019151610f9f565b3d9150610fc1565b919350916020606082611034600194885164ffffffffff604080926fffffffffffffffffffffffffffffffff815116855267ffffffffffffffff6020820151166020860152015116910152565b019401920185939291610f65565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6001906fffffffffffffffffffffffffffffffff61109560a06101d7868a8c6111e4565b1601910190610c99565b807f763e559d0000000000000000000000000000000000000000000000000000000060049252fd5b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361043457565b9060607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126104345773ffffffffffffffffffffffffffffffffffffffff91600435838116810361043457926024359081168103610434579160443567ffffffffffffffff9283821161043457806023830112156104345781600401359384116104345760248460051b83010111610434576024019190565b602090602060408183019282815285518094520193019160005b8281106111ad575050505090565b83518552938101939281019260010161119f565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361043457565b91908110156112245760051b810135907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee181360301821215610434570190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b356fffffffffffffffffffffffffffffffff811681036104345790565b610100810190811067ffffffffffffffff82111761104257604052565b6060810190811067ffffffffffffffff82111761104257604052565b6040810190811067ffffffffffffffff82111761104257604052565b6080810190811067ffffffffffffffff82111761104257604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761104257604052565b67ffffffffffffffff81116110425760051b60200190565b9061134482611322565b61135160405191826112e1565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe061137f8294611322565b0190602036910137565b3580151581036104345790565b3573ffffffffffffffffffffffffffffffffffffffff811681036104345790565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe181360301821215610434570180359067ffffffffffffffff82116104345760200191606082023603831361043457565b919082604091031261043457604051611423816112a9565b8092803573ffffffffffffffffffffffffffffffffffffffff81168103610434578252602090810135910152565b359064ffffffffff8216820361043457565b92919261146f82611322565b60409461147f60405192836112e1565b8195848352602080930191606080960285019481861161043457925b8584106114ab5750505050505050565b8684830312610434578251906114c08261128d565b84356fffffffffffffffffffffffffffffffff81168103610434578252858501359067ffffffffffffffff8216820361043457828792838b950152611506868801611451565b8682015281520193019261149b565b80518210156112245760209160051b010190565b919081101561122457610140020190565b91908110156112245760051b810135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0181360301821215610434570190565b919081101561122457610120020190565b90604080516020907f23b872dd000000000000000000000000000000000000000000000000000000008282015233602482015260449030828201528660648201526064815260a081019080821067ffffffffffffffff831117611042576115f49185528561179d565b73ffffffffffffffffffffffffffffffffffffffff94858516958451917fdd62ed3e0000000000000000000000000000000000000000000000000000000083523060048401521690816024820152838184818a5afa90811561177a57908891600091611749575b501061166b575b50505050505050565b8351956000808589017f095ea7b3000000000000000000000000000000000000000000000000000000009a8b82528560248c0152868b0152858a526116af8a6112c5565b89519082855af1906116bf6118bd565b82611716575b508161170b575b50611662576116ff966116fa945193840152602483015260008183015281526116f4816112c5565b8261179d565b61179d565b38808080808080611662565b90503b1515386116cc565b809192505190858215928315611731575b50505090386116c5565b6117419350820181019101611785565b388581611727565b809250858092503d8311611773575b61176281836112e1565b81010312610434578790513861165b565b503d611758565b85513d6000823e3d90fd5b90816020910312610434575180151581036104345790565b6040516118089173ffffffffffffffffffffffffffffffffffffffff166117c3826112a9565b6000806020958685527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656487860152868151910182855af16118026118bd565b9161191b565b8051908282159283156118a5575b505050156118215750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b6118b59350820181019101611785565b388281611816565b3d15611916573d9067ffffffffffffffff8211611042576040519161190a60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601846112e1565b82523d6000602084013e565b606090565b91929015611996575081511561192f575090565b3b156119385790565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b8251909150156119a95750805190602001fd5b604051907f08c379a000000000000000000000000000000000000000000000000000000000825281602080600483015282519283602484015260005b848110611a26575050507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f836000604480968601015201168101030190fd5b8181018301518682016044015285935082016119e556fea164736f6c6343000817000a
Deployed Bytecode Sourcemap
770:9469:39:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1449:14;1445:89;;770:9469;;1783:13;770:9469;;;;1783:13;;;;2078:14;770:9469;;;;;;2078:14;:::i;:::-;2184:24;770:9469;;;;2184:24;:::i;:::-;2223:5;770:9469;2230:13;770:9469;;;;2230:13;;;;770:9469;;;;;;;:::i;:::-;;;;2223:5;770:9469;;2456:8;770:9469;;;;;;;;2456:8;:::i;:::-;:15;2505:19;770:9469;2505:8;770:9469;;;;;;;;2505:8;:::i;:::-;:19;;:::i;:::-;770:9469;2557:8;770:9469;;;;;;;;2557:8;:::i;:::-;770:9469;2608:18;770:9469;2608:8;770:9469;;;;;;;;2608:8;:::i;:::-;:18;;:::i;:::-;2656:15;:8;770:9469;;;;;;;;2656:8;:::i;:::-;:15;:::i;:::-;770:9469;;2706:20;770:9469;2706:8;770:9469;;;;;;;;2706:8;:::i;:::-;:20;;:::i;:::-;770:9469;2762:21;;:8;:21;770:9469;;;;;;;;;;2762:8;:::i;:21::-;770:9469;;;;;;;;:::i;:::-;;;;;;2359:443;;770:9469;;;2359:443;;770:9469;;;;;2359:443;;770:9469;;;2359:443;;;770:9469;;;2557:18;2359:443;;770:9469;;;;;;;;;;;;;;;;;;;;:::i;:::-;;2557:18;;;770:9469;:::i;:::-;;;;;;;;;:::i;:::-;;;;;2359:443;;;770:9469;;;;:::i;:::-;2359:443;;;770:9469;;;2309:507;770:9469;2309:507;;770:9469;;;;;2309:507;;770:9469;;;2359:443;;770:9469;;;;;;;;2359:443;;770:9469;;;;;;;;2359:443;;770:9469;;;;;;2359:443;;770:9469;;;;;;;2557:18;2359:443;;770:9469;;;;;;;2359:443;;770:9469;;;;;;;;;;;;;;;;;;;2359:443;770:9469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2309:507;;;;;;770:9469;2309:507;;;2223:5;1902:1;2294:522;;;;;;:::i;:::-;770:9469;;2223:5;;2309:507;;770:9469;2309:507;;770:9469;2309:507;;;;;;770:9469;2309:507;;;:::i;:::-;;;770:9469;;;;1902:1;770:9469;;2309:507;;770:9469;;;;2309:507;;;-1:-1:-1;2309:507:39;;;770:9469;;;;;;;;;1776:5;1902:1;770:9469;;1859:20;770:9469;1859:8;770:9469;;;;;;;;1859:8;:::i;:20::-;770:9469;;;;1776:5;;;1445:89;770:9469;;;1486:37;;;;770:9469;;;;;;;:::i;:::-;5394:14;;;;5390:89;;770:9469;5721:5;770:9469;5728:13;;;;;;770:9469;;6037:14;770:9469;;6037:14;;;;:::i;:::-;6143:24;;;:::i;:::-;6182:5;770:9469;6189:13;;;;;;770:9469;;;;;;;:::i;6182:5::-;6411:8;;;;;:::i;:::-;:15;;6460:8;;;;;;;;:::i;:::-;:19;;;;;:::i;:::-;6512:8;;;;;;;:::i;:::-;:18;;;;;:::i;:::-;6562:8;;;;;;:::i;:::-;770:9469;6562:17;;;;;:::i;:::-;6609:8;;;;;;:::i;:::-;:15;;;:::i;:::-;6659:8;;;;;;;;:::i;:::-;5804:20;6659;;;;:::i;:::-;6715:8;;;;:::i;:::-;770:9469;6715:21;;;;:::i;:::-;770:9469;;;;;;;:::i;:::-;;;;;;;6460:19;6316:439;;770:9469;;;;6316:439;;770:9469;;;6512:18;6316:439;;770:9469;;;5804:20;6316:439;;770:9469;;;;6411:15;6316:439;;770:9469;;;;;:::i;:::-;6316:439;;;770:9469;;;;;;:::i;:::-;;6316:439;;770:9469;;;6268:501;;770:9469;6268:501;;770:9469;6268:501;;6460:19;770:9469;;;;;;;;;;;;;;6460:19;6316:439;;770:9469;;;;;;;;6316:439;;770:9469;;;;;;;6512:18;6316:439;;770:9469;;;;;;;5804:20;6316:439;;770:9469;;;;;;;6411:15;6316:439;;770:9469;;;;;;;6316:439;;;770:9469;;;;;;;;;;;;;;;;;;;;;;;6316:439;770:9469;;;;;;;;;;;;;;;;;6460:19;770:9469;;;;;;;;;;6268:501;;;;;6460:19;6268:501;;;770:9469;6268:501;;;;;;;770:9469;6268:501;;;770:9469;5847:1;6253:516;;;;;;:::i;:::-;770:9469;;6182:5;;6268:501;;6460:19;6268:501;;6460:19;6268:501;;;;;;6460:19;6268:501;;;:::i;:::-;;;770:9469;;;;5847:1;770:9469;;6268:501;;;;;-1:-1:-1;6268:501:39;;770:9469;;;;;6460:19;6512:18;770:9469;;5847:1;770:9469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5721:5;5804:8;5847:1;5804:8;770:9469;5804:20;;:8;;;;;:::i;:20::-;770:9469;;;;5721:5;;770:9469;;;;;;;;;;;;;:::i;:::-;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3317:14;3313:89;;770:9469;;3651:13;770:9469;;;;3651:13;;;;3945:14;770:9469;;;;;;3945:14;:::i;:::-;4051:24;770:9469;;;;4051:24;:::i;:::-;4090:5;770:9469;4097:13;770:9469;;;;4097:13;;;;770:9469;;;;;;;:::i;4090:5::-;770:9469;;4315:15;:8;770:9469;;;;;;4315:8;;:::i;:::-;:15;770:9469;4364:19;770:9469;4364:8;770:9469;;;;;4364:8;;:::i;:19::-;4459:18;770:9469;4459:8;770:9469;4412:8;770:9469;;;;;4412:8;;:::i;:::-;770:9469;;;;4459:8;;:::i;:18::-;770:9469;;;;4613:21;4557:20;770:9469;4557:8;770:9469;4507:15;:8;770:9469;;;;;;4507:8;:::i;:15::-;770:9469;;;;;4557:8;;:::i;:20::-;4613:21;:8;:21;;770:9469;;;;;;4613:8;;:::i;:21::-;770:9469;;;;;;;;:::i;:::-;;;;;;4222:431;;770:9469;;;4222:431;;770:9469;;;;;4222:431;;770:9469;;;4222:431;;;770:9469;;;4412:14;4222:431;;770:9469;;;;;;;;;;;;;;;;;;;;:::i;:::-;;4412:14;;;770:9469;:::i;:::-;;;;;;;;;;;;:::i;:::-;;;;;;;:::i;:::-;;;;;4222:431;;;770:9469;;;;:::i;:::-;4222:431;;;770:9469;;;4176:491;770:9469;4176:491;;770:9469;;;;;4176:491;;770:9469;;;4222:431;;770:9469;;;;;;;;4222:431;;770:9469;;;;;;;;4222:431;;770:9469;;;;;;4222:431;;770:9469;;;;;;;4412:14;4222:431;;770:9469;;;;;;;4222:431;;770:9469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;4222:431;770:9469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;4176:491;;;;;;770:9469;4176:491;;;4090:5;3770:1;4161:506;;;;;;:::i;:::-;770:9469;;4090:5;;4176:491;;770:9469;4176:491;;770:9469;4176:491;;;;;;770:9469;4176:491;;;:::i;:::-;;;770:9469;;;;3770:1;770:9469;;4176:491;;;;;-1:-1:-1;4176:491:39;;3644:5;3770:1;770:9469;;3727:20;770:9469;3727:8;770:9469;;;;;3727:8;;:::i;:20::-;770:9469;;;;3644:5;;;770:9469;;;;;;;:::i;:::-;7286:14;;;;;7282:89;;7557:9;770:9469;;7620:13;;;;;;7929:14;770:9469;;;;;;7929:14;:::i;:::-;8035:24;;;:::i;:::-;8074:5;770:9469;8081:13;;;;;;770:9469;;;;;;;:::i;8074:5::-;8311:15;:8;;;;;:::i;:::-;:15;8360:8;:19;770:9469;8360:8;;;;;:::i;:19::-;8412:8;:18;;:8;;;;;:::i;:18::-;8462:8;:17;:8;;;;;:::i;:::-;:17;;;;;:::i;:::-;8509:8;;:15;:8;;;;;:::i;:15::-;8557:8;:18;:8;;;;;:::i;:::-;:18;770:9469;;;;;;;;;8610:8;8666:21;;:8;8610;;:20;7696;8610:8;;;;;;:::i;:20::-;8666:8;;:::i;:21::-;770:9469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;8462:17;770:9469;;;;;;;;;;;;;;8557:18;8212:494;;770:9469;;;;8212:494;;770:9469;;;8666:21;8212:494;;770:9469;;8412:18;8212:494;;770:9469;;7696:20;8212:494;;770:9469;;;;8311:15;8212:494;;770:9469;;;;:::i;:::-;;8212:494;;770:9469;;;;:::i;:::-;8212:494;;;770:9469;;;8160:560;;;770:9469;8160:560;;8557:18;770:9469;8160:560;;770:9469;;;;;;;;;;8557:18;8212:494;;770:9469;;;;;;;8212:494;;770:9469;;;;;;;8666:21;8212:494;;770:9469;;;;;;;;8412:18;8212:494;;770:9469;;;;;;;7696:20;8212:494;;770:9469;;;;;;;8311:15;8212:494;;770:9469;;;;;;;;8212:494;;770:9469;;;;;;;;;;;;;;;;;;;;;8212:494;770:9469;;;;;;;;;;;;;8557:18;770:9469;;;;;;;;;;;;;;8160:560;;;;;8557:18;8160:560;;770:9469;;;;;8160:560;;;;;;770:9469;8160:560;;;770:9469;7739:1;8145:575;;;;;;:::i;:::-;770:9469;;8074:5;;8160:560;;8557:18;8160:560;;8557:18;8160:560;;;;;;8557:18;8160:560;;;:::i;:::-;;;770:9469;;;;7739:1;770:9469;;8160:560;;;;;-1:-1:-1;8160:560:39;;770:9469;;;;;8557:18;8666:21;770:9469;;7739:1;770:9469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;7613:5;7739:1;7696:8;770:9469;7696:20;;:8;;;;;:::i;:20::-;770:9469;;;;7613:5;;;7282:89;7323:37;;770:9469;7323:37;;;770:9469;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;:::o;:::-;4315:15;770:9469;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;:::o;:::-;;;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;;:::i;:::-;;;;;;;;:::o;:::-;;;;;;;;;;:::o;:::-;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;:::o;:::-;;;;;;;:::i;:::-;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;:::o;9892:345::-;;770:9469;;;1482:68:2;;770:9469:39;1482:68:2;;;;10076:10:39;1482:68:2;;;770:9469:39;;10100:4;;770:9469;;;;;;;;;;1482:68:2;;770:9469:39;;;;;;;;;;;;;1482:68:2;770:9469:39;;;1482:68:2;;:::i;:::-;770:9469:39;;;;;;;;9571:67;770:9469;9571:67;;10100:4;9571:67;;;770:9469;;;;1482:68:2;770:9469:39;;;9571:67;;;;;;;;;;;;;;;-1:-1:-1;9571:67:39;;;9892:345;9652:18;;9648:112;;9892:345;;;;;;;;:::o;9648:112::-;770:9469;;3871:62:2;-1:-1:-1;3871:62:2;;;;770:9469:39;3871:62:2;;;;;1482:68;3871:62;;770:9469:39;;;;;3871:62:2;;;;;;:::i;:::-;6742:25;;;;;;;;;;:::i;:::-;6796:69;;;9648:112:39;6796:107:2;;;;9648:112:39;3948:45:2;9648:112:39;3944:216:2;4136:12;770:9469:39;4036:58:2;770:9469:39;;4036:58:2;;;;1482:68;4036:58;;770:9469:39;-1:-1:-1;770:9469:39;;;;4036:58:2;;;;;:::i;:::-;;;:::i;:::-;4136:12;:::i;:::-;3944:216;;;;;;;9648:112:39;;6796:107:2;1702:19:5;;;:23;;6796:107:2;;;:69;770:9469:39;;;;;6808:22:2;;;;:56;;;;;6796:69;;;;;;;;6808:56;6834:30;;-1:-1:-1;6834:30:2;;;;;;;:::i;:::-;6808:56;;;;;9571:67:39;;;;;;;;;;;;;;;;;;:::i;:::-;;;770:9469;;;;;;;9571:67;;;;;;;;;770:9469;;;-1:-1:-1;770:9469:39;;;;;;;;;;;;;;;;;;;;;;;:::o;5173:642:2:-;770:9469:39;;5535:69:5;;770:9469:39;;;;;:::i;:::-;-1:-1:-1;770:9469:39;;;;;;;;;;;5487:31:5;;;;;;;;;;;:::i;:::-;5535:69;;:::i;:::-;770:9469:39;;5705:22:2;;;;:56;;;;;5173:642;770:9469:39;;;;;;5173:642:2;:::o;770:9469:39:-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5705:56:2;5731:30;;-1:-1:-1;5731:30:2;;;;;;;:::i;:::-;5705:56;;;;;770:9469:39;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;-1:-1:-1;770:9469:39;;;;:::o;:::-;;;:::o;7671:628:5:-;;;;7875:418;;;770:9469:39;;;7906:22:5;7902:286;;8201:17;;:::o;7902:286::-;1702:19;:23;770:9469:39;;8201:17:5;:::o;770:9469:39:-;;;;;;;;;;;;;;;;;;;;;;;7875:418:5;770:9469:39;;;;-1:-1:-1;8980:21:5;:17;;9152:142;;;;;;;8976:379;770:9469:39;;9324:20:5;;;;770:9469:39;;;9324:20:5;;;770:9469:39;;;;;;;;;9000:1:5;770:9469:39;;;;;;;;;;;;9000:1:5;770:9469:39;;;;;;;;;;;9324:20:5;;;;770:9469:39;;;;;;;;;;;;;;;-1:-1:-1;770:9469:39;;;
Swarm Source
none://164736f6c6343000817000a
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.